1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
use prelude::*;
#[derive (Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct BoundingBox3D {
min: Point3D,
max: Point3D
}
impl BoundingBox3D {
pub fn new<P1, P2>(min: &P1, max: &P2) -> Result<BoundingBox3D> where
P1: Is3D,
P2: Is3D {
if min.x() == max.x() || min.y() == max.y() || min.z() == max.z() {
Err(ErrorKind::MinMaxEqual)
} else if min.x() > max.x() || min.y() > max.y() || min.z() > max.z() {
Err(ErrorKind::MinMaxSwapped)
} else {
Ok(BoundingBox3D{min: Point3D{x: min.x(), y: min.y(), z: min.z()}, max: Point3D{x: max.x(), y: max.y(), z: max.z()}})
}
}
pub fn from_iterator<'a, It3D,P>(source: It3D) -> Result<BoundingBox3D> where
It3D: IntoIterator<Item=&'a Box<P>>,
P: 'a + Is3D + Sized {
let mut count = 0;
let mut minx : f64 = 0.0;
let mut miny : f64 = 0.0;
let mut minz : f64 = 0.0;
let mut maxx : f64 = 0.0;
let mut maxy : f64 = 0.0;
let mut maxz : f64 = 0.0;
for p in source {
if count == 0 {
minx = p.x();
miny = p.y();
minz = p.z();
maxx = p.x();
maxy = p.y();
maxz = p.z();
count += 1;
continue;
}
if p.x() < minx { minx = p.x(); }
if p.y() < miny { miny = p.y(); }
if p.z() < minz { minz = p.z(); }
if p.x() > maxx { maxx = p.x(); }
if p.y() > maxy { maxy = p.y(); }
if p.z() > maxz { maxz = p.z(); }
count += 1;
}
if count >= 2 {
Self::new(&Point3D{x: minx, y: miny, z: minz}, &Point3D{x: maxx, y: maxy, z: maxz})
} else {
Err(ErrorKind::TooFewPoints)
}
}
pub fn min_p(&self) -> Point3D {
self.min.clone()
}
pub fn max_p(&self) -> Point3D {
self.max.clone()
}
pub fn size_x(&self) -> Positive {
Positive::new((self.max.x() - self.min.x()).abs()).unwrap()
}
pub fn size_y(&self) -> Positive {
Positive::new((self.max.y() - self.min.y()).abs()).unwrap()
}
pub fn size_z(&self) -> Positive {
Positive::new((self.max.z() - self.min.z()).abs()).unwrap()
}
pub fn center_bb(&self) -> Point3D {
Point3D{x: self.min.x() + (self.max.x() - self.min.x()) / 2.0,
y: self.min.y() + (self.max.y() - self.min.y()) / 2.0,
z: self.min.z() + (self.max.z() - self.min.z()) / 2.0}
}
pub fn is_inside(&self, other: &BoundingBox3D) -> bool {
self.min.x() > other.min.x()
&& self.min.y() > other.min.y()
&& self.min.z() > other.min.z()
&& self.max.x() < other.max.x()
&& self.max.y() < other.max.y()
&& self.max.z() < other.max.z()
}
pub fn contains<P>(&self, other: &P) -> bool where
Self: Sized, P: Is3D {
other.x() > self.min.x()
&& other.x() < self.max.x()
&& other.y() > self.min.y()
&& other.y() < self.max.y()
&& other.z() > self.min.z()
&& other.z() < self.max.z()
}
pub fn has_inside(&self, other: &BoundingBox3D) -> bool {
self.min.x() < other.min.x()
&& self.min.y() < other.min.y()
&& self.min.z() < other.min.z()
&& self.max.x() > other.max.x()
&& self.max.y() > other.max.y()
&& self.max.z() > other.max.z()
}
pub fn collides_with(&self, other: &BoundingBox3D) -> bool {
2.0 * self.center_bb().x - other.center_bb().x < ((self.size_x() + other.size_x()).get())
&& 2.0 * self.center_bb().y - other.center_bb().y < ((self.size_y() + other.size_y()).get())
&& 2.0 * self.center_bb().z - other.center_bb().z < ((self.size_z() + other.size_z()).get())
}
}
impl Default for BoundingBox3D {
fn default() -> Self {
BoundingBox3D {min: Point3D {x: -0.5, y: -0.5, z: -0.5}, max: Point3D {x: 0.5, y: 0.5, z: 0.5}}
}
}
impl HasBoundingBox3D for BoundingBox3D {
fn bounding_box(&self) -> Result<BoundingBox3D> {
BoundingBox3D::new(&self.min, &self.max)
}
}
impl HasDistanceTo<BoundingBox3D> for BoundingBox3D {
fn sqr_distance(&self, other: &BoundingBox3D) -> NonNegative {
let mut dx = 0.0;
let mut dy = 0.0;
let mut dz = 0.0;
if other.max_p().x() < self.min_p().x() {
dx = other.max_p().x() - self.min_p().x();
}
else if other.min_p().x() > self.max_p().x() {
dx = other.min_p().x() - self.max_p().x();
}
if other.max_p().y() < self.min_p().y() {
dy = other.max_p().y() - self.min_p().y();
}
else if other.min_p().y() > self.max_p().y() {
dy = other.min_p().y() - self.max_p().y();
}
if other.max_p().z() < self.min_p().z() {
dz = other.max_p().z() - self.min_p().z();
}
else if other.min_p().z() > self.max_p().z() {
dz = other.min_p().z() - self.max_p().z();
}
NonNegative::new(dx*dx + dy*dy + dz*dz).unwrap()
}
}