1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/***********************************************************************************************************************
 * Copyright (c) 2020 by the authors
 *
 * Author: André Borrmann <pspwizard@gmx.de>
 * License: Apache License 2.0 / MIT
 **********************************************************************************************************************/

//! # RWLock
//!

use core::arch::asm;
use core::cell::UnsafeCell;
use core::fmt;
use core::ops::{Deref, DerefMut};
use core::sync::atomic::{AtomicBool, AtomicU32, Ordering};

/// An exclusive access lock around the given data
#[repr(C, align(16))]
pub struct RWLock<T: ?Sized> {
  /// indicates whether a mutual exclusive write lock exists
  write_lock: AtomicBool,
  /// counts existing read-locks, this could be used in future to mark the data as "dirty" if a write lock is aquired
  /// whiled read access is also handed out. Should a write access request fail with existing read access ?
  read_locks: AtomicU32,
  data: UnsafeCell<T>,
}

/// Result of trying to access the data using ``try_lock`` or ``lock`` on the data lock. If the
/// result goes out of scope the write lock is released.
pub struct WriteLockGuard<'a, T: ?Sized + 'a> {
  _data: &'a RWLock<T>,
}

/// Result of aquiring read access to the data using ``read`` on the data lock. If the
/// result goes out of scope the read lock is released.
pub struct ReadLockGuard<'a, T: ?Sized + 'a> {
  _data: &'a RWLock<T>,
}

impl<T> RWLock<T> {
  /// Create a new data access guarding lock.
  pub const fn new(value: T) -> Self {
    RWLock {
      write_lock: AtomicBool::new(false),
      read_locks: AtomicU32::new(0),
      data: UnsafeCell::new(value),
    }
  }
}

impl<T: ?Sized> RWLock<T> {
  /// Try to provide a Writelock for mutual exclusive access. Returns ``None`` if the lock fails
  /// or ``Some(WriteLockGuard)``. The actual data, the [WriteLockGuard] wraps could be conviniently accessed by
  /// dereferencing it.
  pub fn try_write(&self) -> Option<WriteLockGuard<T>> {
    if self.read_locks.load(Ordering::Relaxed) > 0 {
      // write lock can only be given if there is no concurrent ReadLock already
      // existing
      return None;
    }
    // do the atomic operation to set the lock
    if !self.write_lock.swap(true, Ordering::Acquire) {
      // has been false previously means we now have the lock

      #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
      unsafe {
        // dmb required before allow access to the protected resource, see:
        // http://infocenter.arm.com/help/topic/com.arm.doc.dht0008a/DHT0008A_arm_synchronization_primitives.pdf
        asm!("dmb sy");
      }

      Some(WriteLockGuard { _data: self })
    } else {
      // we couldn't set the lock
      None
    }
  }

  /// Provide a WriteLock for mutual exclusive access. This blocks until the data could be
  /// successfully locked. This also implies that there is no concurrent [ReadLockGuard] existing.
  /// The locked data will be returned as [WriteLockGuard]. Simply derefrencing
  /// this allows access to the contained data value.
  ///
  pub fn write(&self) -> WriteLockGuard<T> {
    loop {
      if let Some(write_guard) = self.try_write() {
        //println!("write lock aquired {:?}", core::any::type_name::<T>());
        return write_guard;
      }
      // to save energy and cpu consumption we can wait for an event beeing raised that indicates that the
      // semaphore value has likely beeing changed
      #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
      unsafe {
        asm!("wfe");
      }
    }
  }

  /// Provide a ReadLock to the wrapped data. This call blocks until the recource is available.
  /// There can be as many concurrent [ReadLockGuard]s being handed out if there is no [WriteLockGuard] to the
  /// same resource already existing.
  pub fn try_read(&self) -> Option<ReadLockGuard<T>> {
    // read locks can only handed out if no write lock is existing already
    if self.write_lock.load(Ordering::Relaxed) {
      None
    } else {
      self.read_locks.fetch_add(1, Ordering::Acquire);
      //println!("read lock aquired {:?}", core::any::type_name::<T>());
      Some(ReadLockGuard { _data: self })
    }
  }

  /// Provide a ReadLock to the wrapped data. This call blocks until the recource is available.
  /// There can be as many concurrent [ReadLockGuard]s being handed out if there is no [WriteLockGuard] to the
  /// same resource already existing.
  pub fn read(&self) -> ReadLockGuard<T> {
    // read locks can only handed out if no write lock is existing already
    loop {
      if let Some(read_guard) = self.try_read() {
        //println!("write lock aquired {:?}", core::any::type_name::<T>());
        return read_guard;
      }

      // to save energy and cpu consumption we can wait for an event beeing raised that indicates that the
      // lock value has likely beeing changed
      #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
      unsafe {
        asm!("wfe");
      }
    }
  }

  /// Provide an immutable borrow to the data secured by the RWLock.
  ///
  /// # Safety
  /// This is only safe if it is guarantied that there is exactly only one call to this function or any other
  /// accessor of the RWLock until the returned borrow goes out of scope.
  pub unsafe fn as_ref_unchecked(&self) -> &T {
    &*self.data.get()
  }

  /// Consume the Mutex and return the inner value
  pub fn into_inner(self) -> T
  where
    T: Sized,
  {
    self.data.into_inner()
  }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for RWLock<T>
where
  T: fmt::Debug,
{
  fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
    let mut dbg = f.debug_struct("DataLock");
    match self.try_read() {
      Some(guard) => {
        dbg.field("Value", &&*guard);
      }
      _ => {
        dbg.field("Value", &"unable to r-lock");
      }
    }
    dbg.field("ReadLocks", &self.read_locks);
    dbg.finish_non_exhaustive()
  }
}

// when the WriteLockGuard is dropped release the owning lock
impl<T: ?Sized> Drop for WriteLockGuard<'_, T> {
  fn drop(&mut self) {
    self._data.write_lock.store(false, Ordering::Release);
    //println!("write lock released {:?}", core::any::type_name::<T>());

    #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
    unsafe {
      // dmb required before allow access to the protected resource, see:
      // http://infocenter.arm.com/help/topic/com.arm.doc.dht0008a/DHT0008A_arm_synchronization_primitives.pdf
      asm!("dmb sy");
      // also raise a signal to indicate the semaphore has been changed (this trigger all WFE's to continue
      // processing) but do data syncronisation barrier upfront to ensure any data updates has been finished
      asm!(
        "dsb sy
         sev"
      );
    }
  }
}

// when the ReadLockGuard is dropped release the owning lock
impl<T: ?Sized> Drop for ReadLockGuard<'_, T> {
  fn drop(&mut self) {
    self._data.read_locks.fetch_sub(1, Ordering::Release);
    //println!("read lock released {:?}", core::any::type_name::<T>());

    #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
    unsafe {
      // dmb required after atomic operations, see:
      // http://infocenter.arm.com/help/topic/com.arm.doc.dht0008a/DHT0008A_arm_synchronization_primitives.pdf
      asm!("dmb sy");
    }
  }
}

// dereferencing the value contained in the DataWriteLock
// this is ok as the DataWriteLock does only exist if the exclusive access to the data could
// be ensured. Therefore also only one ``WriteLockGuard`` could ever exist for one specific ``RWLock``, which makes
// it safe to return immutable and mutable references.
impl<T: ?Sized> Deref for WriteLockGuard<'_, T> {
  type Target = T;

  fn deref(&self) -> &T {
    unsafe { &*self._data.data.get() }
  }
}

impl<T: ?Sized> DerefMut for WriteLockGuard<'_, T> {
  fn deref_mut(&mut self) -> &mut T {
    unsafe { &mut *self._data.data.get() }
  }
}

// the ``ReadLockGuard`` can only be immutable dereferenced
impl<T: ?Sized> Deref for ReadLockGuard<'_, T> {
  type Target = T;

  fn deref(&self) -> &T {
    unsafe { &*self._data.data.get() }
  }
}

/// implement debug trait to forward to the type wrapped within the guard
impl<T: ?Sized + fmt::Debug> fmt::Debug for WriteLockGuard<'_, T> {
  fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
    fmt::Debug::fmt(&**self, f)
  }
}

/// implement debug trait to forward to the type wrapped within the guard
impl<T: ?Sized + fmt::Debug> fmt::Debug for ReadLockGuard<'_, T> {
  fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
    fmt::Debug::fmt(&**self, f)
  }
}

/// The RWLock is always `Sync`, to make it `Send` as well it need to be wrapped into an `Arc`.
unsafe impl<T: ?Sized + Send> Sync for RWLock<T> {}

#[cfg(testing)]
mod tests {
  extern crate alloc;
  use super::*;
  use alloc::sync::Arc;

  #[test]
  fn only_one_write_lock() {
    let rwlock = Arc::new(RWLock::new(0u32));
    let rwlock_clone = Arc::clone(&rwlock);
    // try_lock and lock will provide a WriteLock
    let mut data = rwlock.write();
    *data = 20;
    // if a write lock exists no read lock's could be aquired
    assert!(rwlock_clone.try_write().is_none());
  }

  #[test]
  fn only_one_write_no_readlock() {
    let rwlock = Arc::new(RWLock::new(0u32));
    let rwlock_clone = Arc::clone(&rwlock);
    // try_lock and lock will provide a WriteLock
    let mut data = rwlock.write();
    *data = 20;
    // if a write lock exists no read lock's could be aquired
    assert!(rwlock_clone.try_read().is_none());
  }

  #[test]
  fn only_multiple_readlocks() {
    let rwlock = Arc::new(RWLock::new(0u32));
    let rwlock_clone = Arc::clone(&rwlock);
    // try_lock and lock will provide a WriteLock
    let data = rwlock.read();
    // if a write lock exists no read lock's could be aquired
    assert!(rwlock_clone.try_read().is_some());
    println!("{}", *data);
  }

  #[test]
  fn only_read_no_write_lock() {
    let rwlock = Arc::new(RWLock::new(0u32));
    let rwlock_clone = Arc::clone(&rwlock);
    // try_lock and lock will provide a WriteLock
    let data = rwlock.read();
    // if a write lock exists no read lock's could be aquired
    assert!(rwlock_clone.try_write().is_none());
    println!("{}", *data);
  }
}