logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
// =================================================================
//
//                           * WARNING *
//
//                    This file is generated!
//
//  Changes made to this file will be overwritten. If changes are
//  required to the generated code, the service_crategen project
//  must be updated to generate the changes.
//
// =================================================================

use std::error::Error;
use std::fmt;

use async_trait::async_trait;
use rusoto_core::credential::ProvideAwsCredentials;
use rusoto_core::region;
use rusoto_core::request::{BufferedHttpResponse, DispatchSignedRequest};
use rusoto_core::{Client, RusotoError};

use rusoto_core::param::{Params, ServiceParams};
use rusoto_core::proto;
use rusoto_core::signature::SignedRequest;
#[allow(unused_imports)]
use serde::{Deserialize, Serialize};
use serde_json;
/// <p>A context is a variable that contains information about the current state of the conversation between a user and Amazon Lex. Context can be set automatically by Amazon Lex when an intent is fulfilled, or it can be set at runtime using the <code>PutContent</code>, <code>PutText</code>, or <code>PutSession</code> operation.</p>
#[derive(Clone, Debug, Default, Deserialize, PartialEq, Serialize)]
pub struct ActiveContext {
    /// <p>The name of the context.</p>
    #[serde(rename = "name")]
    pub name: String,
    /// <p>State variables for the current context. You can use these values as default values for slots in subsequent events.</p>
    #[serde(rename = "parameters")]
    pub parameters: ::std::collections::HashMap<String, String>,
    /// <p>The length of time or number of turns that a context remains active.</p>
    #[serde(rename = "timeToLive")]
    pub time_to_live: ActiveContextTimeToLive,
}

/// <p>The length of time or number of turns that a context remains active.</p>
#[derive(Clone, Debug, Default, Deserialize, PartialEq, Serialize)]
pub struct ActiveContextTimeToLive {
    /// <p>The number of seconds that the context should be active after it is first sent in a <code>PostContent</code> or <code>PostText</code> response. You can set the value between 5 and 86,400 seconds (24 hours).</p>
    #[serde(rename = "timeToLiveInSeconds")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub time_to_live_in_seconds: Option<i64>,
    /// <p>The number of conversation turns that the context should be active. A conversation turn is one <code>PostContent</code> or <code>PostText</code> request and the corresponding response from Amazon Lex.</p>
    #[serde(rename = "turnsToLive")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub turns_to_live: Option<i64>,
}

/// <p>Represents an option to be shown on the client platform (Facebook, Slack, etc.)</p>
#[derive(Clone, Debug, Default, Deserialize, PartialEq)]
#[cfg_attr(any(test, feature = "serialize_structs"), derive(Serialize))]
pub struct Button {
    /// <p>Text that is visible to the user on the button.</p>
    #[serde(rename = "text")]
    pub text: String,
    /// <p>The value sent to Amazon Lex when a user chooses the button. For example, consider button text "NYC." When the user chooses the button, the value sent can be "New York City."</p>
    #[serde(rename = "value")]
    pub value: String,
}

#[derive(Clone, Debug, Default, PartialEq, Serialize)]
#[cfg_attr(feature = "deserialize_structs", derive(Deserialize))]
pub struct DeleteSessionRequest {
    /// <p>The alias in use for the bot that contains the session data.</p>
    #[serde(rename = "botAlias")]
    pub bot_alias: String,
    /// <p>The name of the bot that contains the session data.</p>
    #[serde(rename = "botName")]
    pub bot_name: String,
    /// <p>The identifier of the user associated with the session data.</p>
    #[serde(rename = "userId")]
    pub user_id: String,
}

#[derive(Clone, Debug, Default, Deserialize, PartialEq)]
#[cfg_attr(any(test, feature = "serialize_structs"), derive(Serialize))]
pub struct DeleteSessionResponse {
    /// <p>The alias in use for the bot associated with the session data.</p>
    #[serde(rename = "botAlias")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bot_alias: Option<String>,
    /// <p>The name of the bot associated with the session data.</p>
    #[serde(rename = "botName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bot_name: Option<String>,
    /// <p>The unique identifier for the session.</p>
    #[serde(rename = "sessionId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub session_id: Option<String>,
    /// <p>The ID of the client application user.</p>
    #[serde(rename = "userId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub user_id: Option<String>,
}

/// <p>Describes the next action that the bot should take in its interaction with the user and provides information about the context in which the action takes place. Use the <code>DialogAction</code> data type to set the interaction to a specific state, or to return the interaction to a previous state.</p>
#[derive(Clone, Debug, Default, Deserialize, PartialEq, Serialize)]
pub struct DialogAction {
    /// <p><p>The fulfillment state of the intent. The possible values are:</p> <ul> <li> <p> <code>Failed</code> - The Lambda function associated with the intent failed to fulfill the intent.</p> </li> <li> <p> <code>Fulfilled</code> - The intent has fulfilled by the Lambda function associated with the intent. </p> </li> <li> <p> <code>ReadyForFulfillment</code> - All of the information necessary for the intent is present and the intent ready to be fulfilled by the client application.</p> </li> </ul></p>
    #[serde(rename = "fulfillmentState")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub fulfillment_state: Option<String>,
    /// <p>The name of the intent.</p>
    #[serde(rename = "intentName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub intent_name: Option<String>,
    /// <p>The message that should be shown to the user. If you don't specify a message, Amazon Lex will use the message configured for the intent.</p>
    #[serde(rename = "message")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub message: Option<String>,
    /// <ul> <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li> <li> <p> <code>CustomPayload</code> - The message is a custom format for the client.</p> </li> <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li> <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/howitworks-manage-prompts.html">Message Groups</a>. </p> </li> </ul>
    #[serde(rename = "messageFormat")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub message_format: Option<String>,
    /// <p>The name of the slot that should be elicited from the user.</p>
    #[serde(rename = "slotToElicit")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub slot_to_elicit: Option<String>,
    /// <p>Map of the slots that have been gathered and their values. </p>
    #[serde(rename = "slots")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub slots: Option<::std::collections::HashMap<String, String>>,
    /// <p><p>The next action that the bot should take in its interaction with the user. The possible values are:</p> <ul> <li> <p> <code>ConfirmIntent</code> - The next action is asking the user if the intent is complete and ready to be fulfilled. This is a yes/no question such as &quot;Place the order?&quot;</p> </li> <li> <p> <code>Close</code> - Indicates that the there will not be a response from the user. For example, the statement &quot;Your order has been placed&quot; does not require a response.</p> </li> <li> <p> <code>Delegate</code> - The next action is determined by Amazon Lex.</p> </li> <li> <p> <code>ElicitIntent</code> - The next action is to determine the intent that the user wants to fulfill.</p> </li> <li> <p> <code>ElicitSlot</code> - The next action is to elicit a slot value from the user.</p> </li> </ul></p>
    #[serde(rename = "type")]
    pub type_: String,
}

/// <p>Represents an option rendered to the user when a prompt is shown. It could be an image, a button, a link, or text. </p>
#[derive(Clone, Debug, Default, Deserialize, PartialEq)]
#[cfg_attr(any(test, feature = "serialize_structs"), derive(Serialize))]
pub struct GenericAttachment {
    /// <p>The URL of an attachment to the response card.</p>
    #[serde(rename = "attachmentLinkUrl")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub attachment_link_url: Option<String>,
    /// <p>The list of options to show to the user.</p>
    #[serde(rename = "buttons")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub buttons: Option<Vec<Button>>,
    /// <p>The URL of an image that is displayed to the user.</p>
    #[serde(rename = "imageUrl")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub image_url: Option<String>,
    /// <p>The subtitle shown below the title.</p>
    #[serde(rename = "subTitle")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sub_title: Option<String>,
    /// <p>The title of the option.</p>
    #[serde(rename = "title")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub title: Option<String>,
}

#[derive(Clone, Debug, Default, PartialEq, Serialize)]
#[cfg_attr(feature = "deserialize_structs", derive(Deserialize))]
pub struct GetSessionRequest {
    /// <p>The alias in use for the bot that contains the session data.</p>
    #[serde(rename = "botAlias")]
    pub bot_alias: String,
    /// <p>The name of the bot that contains the session data.</p>
    #[serde(rename = "botName")]
    pub bot_name: String,
    /// <p>A string used to filter the intents returned in the <code>recentIntentSummaryView</code> structure. </p> <p>When you specify a filter, only intents with their <code>checkpointLabel</code> field set to that string are returned.</p>
    #[serde(rename = "checkpointLabelFilter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub checkpoint_label_filter: Option<String>,
    /// <p>The ID of the client application user. Amazon Lex uses this to identify a user's conversation with your bot. </p>
    #[serde(rename = "userId")]
    pub user_id: String,
}

#[derive(Clone, Debug, Default, Deserialize, PartialEq)]
#[cfg_attr(any(test, feature = "serialize_structs"), derive(Serialize))]
pub struct GetSessionResponse {
    /// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p> <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
    #[serde(rename = "activeContexts")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub active_contexts: Option<Vec<ActiveContext>>,
    /// <p>Describes the current state of the bot.</p>
    #[serde(rename = "dialogAction")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub dialog_action: Option<DialogAction>,
    /// <p>An array of information about the intents used in the session. The array can contain a maximum of three summaries. If more than three intents are used in the session, the <code>recentIntentSummaryView</code> operation contains information about the last three intents used.</p> <p>If you set the <code>checkpointLabelFilter</code> parameter in the request, the array contains only the intents with the specified label.</p>
    #[serde(rename = "recentIntentSummaryView")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub recent_intent_summary_view: Option<Vec<IntentSummary>>,
    /// <p>Map of key/value pairs representing the session-specific context information. It contains application information passed between Amazon Lex and a client application.</p>
    #[serde(rename = "sessionAttributes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub session_attributes: Option<::std::collections::HashMap<String, String>>,
    /// <p>A unique identifier for the session.</p>
    #[serde(rename = "sessionId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub session_id: Option<String>,
}

/// <p>Provides a score that indicates the confidence that Amazon Lex has that an intent is the one that satisfies the user's intent.</p>
#[derive(Clone, Debug, Default, Deserialize, PartialEq)]
#[cfg_attr(any(test, feature = "serialize_structs"), derive(Serialize))]
pub struct IntentConfidence {
    /// <p>A score that indicates how confident Amazon Lex is that an intent satisfies the user's intent. Ranges between 0.00 and 1.00. Higher scores indicate higher confidence.</p>
    #[serde(rename = "score")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub score: Option<f64>,
}

/// <p>Provides information about the state of an intent. You can use this information to get the current state of an intent so that you can process the intent, or so that you can return the intent to its previous state.</p>
#[derive(Clone, Debug, Default, Deserialize, PartialEq, Serialize)]
pub struct IntentSummary {
    /// <p>A user-defined label that identifies a particular intent. You can use this label to return to a previous intent. </p> <p>Use the <code>checkpointLabelFilter</code> parameter of the <code>GetSessionRequest</code> operation to filter the intents returned by the operation to those with only the specified label.</p>
    #[serde(rename = "checkpointLabel")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub checkpoint_label: Option<String>,
    /// <p><p>The status of the intent after the user responds to the confirmation prompt. If the user confirms the intent, Amazon Lex sets this field to <code>Confirmed</code>. If the user denies the intent, Amazon Lex sets this value to <code>Denied</code>. The possible values are:</p> <ul> <li> <p> <code>Confirmed</code> - The user has responded &quot;Yes&quot; to the confirmation prompt, confirming that the intent is complete and that it is ready to be fulfilled.</p> </li> <li> <p> <code>Denied</code> - The user has responded &quot;No&quot; to the confirmation prompt.</p> </li> <li> <p> <code>None</code> - The user has never been prompted for confirmation; or, the user was prompted but did not confirm or deny the prompt.</p> </li> </ul></p>
    #[serde(rename = "confirmationStatus")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confirmation_status: Option<String>,
    /// <p><p>The next action that the bot should take in its interaction with the user. The possible values are:</p> <ul> <li> <p> <code>ConfirmIntent</code> - The next action is asking the user if the intent is complete and ready to be fulfilled. This is a yes/no question such as &quot;Place the order?&quot;</p> </li> <li> <p> <code>Close</code> - Indicates that the there will not be a response from the user. For example, the statement &quot;Your order has been placed&quot; does not require a response.</p> </li> <li> <p> <code>ElicitIntent</code> - The next action is to determine the intent that the user wants to fulfill.</p> </li> <li> <p> <code>ElicitSlot</code> - The next action is to elicit a slot value from the user.</p> </li> </ul></p>
    #[serde(rename = "dialogActionType")]
    pub dialog_action_type: String,
    /// <p><p>The fulfillment state of the intent. The possible values are:</p> <ul> <li> <p> <code>Failed</code> - The Lambda function associated with the intent failed to fulfill the intent.</p> </li> <li> <p> <code>Fulfilled</code> - The intent has fulfilled by the Lambda function associated with the intent. </p> </li> <li> <p> <code>ReadyForFulfillment</code> - All of the information necessary for the intent is present and the intent ready to be fulfilled by the client application.</p> </li> </ul></p>
    #[serde(rename = "fulfillmentState")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub fulfillment_state: Option<String>,
    /// <p>The name of the intent.</p>
    #[serde(rename = "intentName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub intent_name: Option<String>,
    /// <p>The next slot to elicit from the user. If there is not slot to elicit, the field is blank.</p>
    #[serde(rename = "slotToElicit")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub slot_to_elicit: Option<String>,
    /// <p>Map of the slots that have been gathered and their values. </p>
    #[serde(rename = "slots")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub slots: Option<::std::collections::HashMap<String, String>>,
}

#[derive(Clone, Debug, Default, PartialEq, Serialize)]
#[cfg_attr(feature = "deserialize_structs", derive(Deserialize))]
pub struct PostContentRequest {
    /// <p><p> You pass this value as the <code>Accept</code> HTTP header. </p> <p> The message Amazon Lex returns in the response can be either text or speech based on the <code>Accept</code> HTTP header value in the request. </p> <ul> <li> <p> If the value is <code>text/plain; charset=utf-8</code>, Amazon Lex returns text in the response. </p> </li> <li> <p> If the value begins with <code>audio/</code>, Amazon Lex returns speech in the response. Amazon Lex uses Amazon Polly to generate the speech (using the configuration you specified in the <code>Accept</code> header). For example, if you specify <code>audio/mpeg</code> as the value, Amazon Lex returns speech in the MPEG format.</p> </li> <li> <p>If the value is <code>audio/pcm</code>, the speech returned is <code>audio/pcm</code> in 16-bit, little endian format. </p> </li> <li> <p>The following are the accepted values:</p> <ul> <li> <p>audio/mpeg</p> </li> <li> <p>audio/ogg</p> </li> <li> <p>audio/pcm</p> </li> <li> <p>text/plain; charset=utf-8</p> </li> <li> <p>audio/* (defaults to mpeg)</p> </li> </ul> </li> </ul></p>
    #[serde(rename = "accept")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub accept: Option<String>,
    /// <p>A list of contexts active for the request. A context can be activated when a previous intent is fulfilled, or by including the context in the request,</p> <p>If you don't specify a list of contexts, Amazon Lex will use the current list of contexts for the session. If you specify an empty list, all contexts for the session are cleared.</p>
    #[serde(rename = "activeContexts")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub active_contexts: Option<String>,
    /// <p>Alias of the Amazon Lex bot.</p>
    #[serde(rename = "botAlias")]
    pub bot_alias: String,
    /// <p>Name of the Amazon Lex bot.</p>
    #[serde(rename = "botName")]
    pub bot_name: String,
    /// <p><p> You pass this value as the <code>Content-Type</code> HTTP header. </p> <p> Indicates the audio format or text. The header value must start with one of the following prefixes: </p> <ul> <li> <p>PCM format, audio data must be in little-endian byte order.</p> <ul> <li> <p>audio/l16; rate=16000; channels=1</p> </li> <li> <p>audio/x-l16; sample-rate=16000; channel-count=1</p> </li> <li> <p>audio/lpcm; sample-rate=8000; sample-size-bits=16; channel-count=1; is-big-endian=false </p> </li> </ul> </li> <li> <p>Opus format</p> <ul> <li> <p>audio/x-cbr-opus-with-preamble; preamble-size=0; bit-rate=256000; frame-size-milliseconds=4</p> </li> </ul> </li> <li> <p>Text format</p> <ul> <li> <p>text/plain; charset=utf-8</p> </li> </ul> </li> </ul></p>
    #[serde(rename = "contentType")]
    pub content_type: String,
    /// <p> User input in PCM or Opus audio format or text format as described in the <code>Content-Type</code> HTTP header. </p> <p>You can stream audio data to Amazon Lex or you can create a local buffer that captures all of the audio data before sending. In general, you get better performance if you stream audio data rather than buffering the data locally.</p>
    #[serde(rename = "inputStream")]
    #[serde(
        deserialize_with = "::rusoto_core::serialization::SerdeBlob::deserialize_blob",
        serialize_with = "::rusoto_core::serialization::SerdeBlob::serialize_blob",
        default
    )]
    pub input_stream: bytes::Bytes,
    /// <p>You pass this value as the <code>x-amz-lex-request-attributes</code> HTTP header.</p> <p>Request-specific information passed between Amazon Lex and a client application. The value must be a JSON serialized and base64 encoded map with string keys and values. The total size of the <code>requestAttributes</code> and <code>sessionAttributes</code> headers is limited to 12 KB.</p> <p>The namespace <code>x-amz-lex:</code> is reserved for special attributes. Don't create any request attributes with the prefix <code>x-amz-lex:</code>.</p> <p>For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html#context-mgmt-request-attribs">Setting Request Attributes</a>.</p>
    #[serde(rename = "requestAttributes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub request_attributes: Option<String>,
    /// <p>You pass this value as the <code>x-amz-lex-session-attributes</code> HTTP header.</p> <p>Application-specific information passed between Amazon Lex and a client application. The value must be a JSON serialized and base64 encoded map with string keys and values. The total size of the <code>sessionAttributes</code> and <code>requestAttributes</code> headers is limited to 12 KB.</p> <p>For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html#context-mgmt-session-attribs">Setting Session Attributes</a>.</p>
    #[serde(rename = "sessionAttributes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub session_attributes: Option<String>,
    /// <p><p>The ID of the client application user. Amazon Lex uses this to identify a user&#39;s conversation with your bot. At runtime, each request must contain the <code>userID</code> field.</p> <p>To decide the user ID to use for your application, consider the following factors.</p> <ul> <li> <p>The <code>userID</code> field must not contain any personally identifiable information of the user, for example, name, personal identification numbers, or other end user personal information.</p> </li> <li> <p>If you want a user to start a conversation on one device and continue on another device, use a user-specific identifier.</p> </li> <li> <p>If you want the same user to be able to have two independent conversations on two different devices, choose a device-specific identifier.</p> </li> <li> <p>A user can&#39;t have two independent conversations with two different versions of the same bot. For example, a user can&#39;t have a conversation with the PROD and BETA versions of the same bot. If you anticipate that a user will need to have conversation with two different versions, for example, while testing, include the bot alias in the user ID to separate the two conversations.</p> </li> </ul></p>
    #[serde(rename = "userId")]
    pub user_id: String,
}

#[derive(Clone, Debug, Default, PartialEq)]
pub struct PostContentResponse {
    /// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p> <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
    pub active_contexts: Option<String>,
    /// <p>One to four alternative intents that may be applicable to the user's intent.</p> <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
    pub alternative_intents: Option<String>,
    /// <p>The prompt (or statement) to convey to the user. This is based on the bot configuration and context. For example, if Amazon Lex did not understand the user intent, it sends the <code>clarificationPrompt</code> configured for the bot. If the intent requires confirmation before taking the fulfillment action, it sends the <code>confirmationPrompt</code>. Another example: Suppose that the Lambda function successfully fulfilled the intent, and sent a message to convey to the user. Then Amazon Lex sends that message in the response. </p>
    pub audio_stream: Option<bytes::Bytes>,
    /// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
    pub bot_version: Option<String>,
    /// <p>Content type as specified in the <code>Accept</code> HTTP header in the request.</p>
    pub content_type: Option<String>,
    /// <p><p>Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface. </p> <ul> <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit the user&#39;s intent. Consider the following examples: </p> <p> For example, a user might utter an intent (&quot;I want to order a pizza&quot;). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialog state. </p> </li> <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a &quot;yes&quot; or &quot;no&quot; response. </p> <p>For example, Amazon Lex wants user confirmation before fulfilling an intent. Instead of a simple &quot;yes&quot; or &quot;no&quot; response, a user might respond with additional information. For example, &quot;yes, but make it a thick crust pizza&quot; or &quot;no, I want to order a drink.&quot; Amazon Lex can process such additional information (in these examples, update the crust type slot or change the intent from OrderPizza to OrderDrink). </p> </li> <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting the value of a slot for the current intent. </p> <p> For example, suppose that in the response Amazon Lex sends this message: &quot;What size pizza would you like?&quot;. A user might reply with the slot value (e.g., &quot;medium&quot;). The user might also provide additional information in the response (e.g., &quot;medium thick crust pizza&quot;). Amazon Lex can process such additional information appropriately. </p> </li> <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function has successfully fulfilled the intent. </p> </li> <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the request. </p> </li> <li> <p> <code>Failed</code> - Conveys that the conversation with the user failed. </p> <p> This can happen for various reasons, including that the user does not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or if the Lambda function fails to fulfill the intent. </p> </li> </ul></p>
    pub dialog_state: Option<String>,
    /// <p>The text used to process the request.</p> <p>If the input was an audio stream, the <code>encodedInputTranscript</code> field contains the text extracted from the audio stream. This is the text that is actually processed to recognize intents and slot values. You can use this information to determine if Amazon Lex is correctly processing the audio that you send.</p> <p>The <code>encodedInputTranscript</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
    pub encoded_input_transcript: Option<String>,
    /// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p> <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p> <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <a>msg-prompts-formats</a>.</p> <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p> <p>The <code>encodedMessage</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
    pub encoded_message: Option<String>,
    /// <p>Current user intent that Amazon Lex is aware of.</p>
    pub intent_name: Option<String>,
    /// <p><p>The format of the response message. One of the following values:</p> <ul> <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li> <li> <p> <code>CustomPayload</code> - The message is a custom format for the client.</p> </li> <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li> <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li> </ul></p>
    pub message_format: Option<String>,
    /// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0.</p> <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex. </p>
    pub nlu_intent_confidence: Option<String>,
    /// <p>The sentiment expressed in an utterance.</p> <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
    pub sentiment_response: Option<String>,
    /// <p> Map of key/value pairs representing the session-specific context information. </p>
    pub session_attributes: Option<String>,
    /// <p>The unique identifier for the session.</p>
    pub session_id: Option<String>,
    /// <p> If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value. </p>
    pub slot_to_elicit: Option<String>,
    /// <p>Map of zero or more intent slots (name/value pairs) Amazon Lex detected from the user input during the conversation. The field is base-64 encoded.</p> <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
    pub slots: Option<String>,
}

#[derive(Clone, Debug, Default, PartialEq, Serialize)]
#[cfg_attr(feature = "deserialize_structs", derive(Deserialize))]
pub struct PostTextRequest {
    /// <p>A list of contexts active for the request. A context can be activated when a previous intent is fulfilled, or by including the context in the request,</p> <p>If you don't specify a list of contexts, Amazon Lex will use the current list of contexts for the session. If you specify an empty list, all contexts for the session are cleared.</p>
    #[serde(rename = "activeContexts")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub active_contexts: Option<Vec<ActiveContext>>,
    /// <p>The alias of the Amazon Lex bot.</p>
    #[serde(rename = "botAlias")]
    pub bot_alias: String,
    /// <p>The name of the Amazon Lex bot.</p>
    #[serde(rename = "botName")]
    pub bot_name: String,
    /// <p>The text that the user entered (Amazon Lex interprets this text).</p>
    #[serde(rename = "inputText")]
    pub input_text: String,
    /// <p>Request-specific information passed between Amazon Lex and a client application.</p> <p>The namespace <code>x-amz-lex:</code> is reserved for special attributes. Don't create any request attributes with the prefix <code>x-amz-lex:</code>.</p> <p>For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html#context-mgmt-request-attribs">Setting Request Attributes</a>.</p>
    #[serde(rename = "requestAttributes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub request_attributes: Option<::std::collections::HashMap<String, String>>,
    /// <p>Application-specific information passed between Amazon Lex and a client application.</p> <p>For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html#context-mgmt-session-attribs">Setting Session Attributes</a>.</p>
    #[serde(rename = "sessionAttributes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub session_attributes: Option<::std::collections::HashMap<String, String>>,
    /// <p><p>The ID of the client application user. Amazon Lex uses this to identify a user&#39;s conversation with your bot. At runtime, each request must contain the <code>userID</code> field.</p> <p>To decide the user ID to use for your application, consider the following factors.</p> <ul> <li> <p>The <code>userID</code> field must not contain any personally identifiable information of the user, for example, name, personal identification numbers, or other end user personal information.</p> </li> <li> <p>If you want a user to start a conversation on one device and continue on another device, use a user-specific identifier.</p> </li> <li> <p>If you want the same user to be able to have two independent conversations on two different devices, choose a device-specific identifier.</p> </li> <li> <p>A user can&#39;t have two independent conversations with two different versions of the same bot. For example, a user can&#39;t have a conversation with the PROD and BETA versions of the same bot. If you anticipate that a user will need to have conversation with two different versions, for example, while testing, include the bot alias in the user ID to separate the two conversations.</p> </li> </ul></p>
    #[serde(rename = "userId")]
    pub user_id: String,
}

#[derive(Clone, Debug, Default, Deserialize, PartialEq)]
#[cfg_attr(any(test, feature = "serialize_structs"), derive(Serialize))]
pub struct PostTextResponse {
    /// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p> <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
    #[serde(rename = "activeContexts")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub active_contexts: Option<Vec<ActiveContext>>,
    /// <p>One to four alternative intents that may be applicable to the user's intent.</p> <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
    #[serde(rename = "alternativeIntents")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub alternative_intents: Option<Vec<PredictedIntent>>,
    /// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
    #[serde(rename = "botVersion")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bot_version: Option<String>,
    /// <p><p> Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface. </p> <ul> <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit user intent. </p> <p>For example, a user might utter an intent (&quot;I want to order a pizza&quot;). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialogState.</p> </li> <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a &quot;yes&quot; or &quot;no&quot; response. </p> <p> For example, Amazon Lex wants user confirmation before fulfilling an intent. </p> <p>Instead of a simple &quot;yes&quot; or &quot;no,&quot; a user might respond with additional information. For example, &quot;yes, but make it thick crust pizza&quot; or &quot;no, I want to order a drink&quot;. Amazon Lex can process such additional information (in these examples, update the crust type slot value, or change intent from OrderPizza to OrderDrink).</p> </li> <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting a slot value for the current intent. </p> <p>For example, suppose that in the response Amazon Lex sends this message: &quot;What size pizza would you like?&quot;. A user might reply with the slot value (e.g., &quot;medium&quot;). The user might also provide additional information in the response (e.g., &quot;medium thick crust pizza&quot;). Amazon Lex can process such additional information appropriately. </p> </li> <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function configured for the intent has successfully fulfilled the intent. </p> </li> <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent. </p> </li> <li> <p> <code>Failed</code> - Conveys that the conversation with the user failed. </p> <p> This can happen for various reasons including that the user did not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or the Lambda function failed to fulfill the intent. </p> </li> </ul></p>
    #[serde(rename = "dialogState")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub dialog_state: Option<String>,
    /// <p>The current user intent that Amazon Lex is aware of.</p>
    #[serde(rename = "intentName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub intent_name: Option<String>,
    /// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p> <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p> <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <a>msg-prompts-formats</a>.</p> <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
    #[serde(rename = "message")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub message: Option<String>,
    /// <p><p>The format of the response message. One of the following values:</p> <ul> <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li> <li> <p> <code>CustomPayload</code> - The message is a custom format defined by the Lambda function.</p> </li> <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li> <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li> </ul></p>
    #[serde(rename = "messageFormat")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub message_format: Option<String>,
    /// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/confidence-scores.html">Confidence Scores</a>.</p> <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex.</p>
    #[serde(rename = "nluIntentConfidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub nlu_intent_confidence: Option<IntentConfidence>,
    /// <p>Represents the options that the user has to respond to the current prompt. Response Card can come from the bot configuration (in the Amazon Lex console, choose the settings button next to a slot) or from a code hook (Lambda function). </p>
    #[serde(rename = "responseCard")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub response_card: Option<ResponseCard>,
    /// <p>The sentiment expressed in and utterance.</p> <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
    #[serde(rename = "sentimentResponse")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sentiment_response: Option<SentimentResponse>,
    /// <p>A map of key-value pairs representing the session-specific context information.</p>
    #[serde(rename = "sessionAttributes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub session_attributes: Option<::std::collections::HashMap<String, String>>,
    /// <p>A unique identifier for the session.</p>
    #[serde(rename = "sessionId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub session_id: Option<String>,
    /// <p>If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value. </p>
    #[serde(rename = "slotToElicit")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub slot_to_elicit: Option<String>,
    /// <p> The intent slots that Amazon Lex detected from the user input in the conversation. </p> <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
    #[serde(rename = "slots")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub slots: Option<::std::collections::HashMap<String, Option<String>>>,
}

/// <p>An intent that Amazon Lex suggests satisfies the user's intent. Includes the name of the intent, the confidence that Amazon Lex has that the user's intent is satisfied, and the slots defined for the intent.</p>
#[derive(Clone, Debug, Default, Deserialize, PartialEq)]
#[cfg_attr(any(test, feature = "serialize_structs"), derive(Serialize))]
pub struct PredictedIntent {
    /// <p>The name of the intent that Amazon Lex suggests satisfies the user's intent.</p>
    #[serde(rename = "intentName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub intent_name: Option<String>,
    /// <p>Indicates how confident Amazon Lex is that an intent satisfies the user's intent.</p>
    #[serde(rename = "nluIntentConfidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub nlu_intent_confidence: Option<IntentConfidence>,
    /// <p>The slot and slot values associated with the predicted intent.</p>
    #[serde(rename = "slots")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub slots: Option<::std::collections::HashMap<String, String>>,
}

#[derive(Clone, Debug, Default, PartialEq, Serialize)]
#[cfg_attr(feature = "deserialize_structs", derive(Deserialize))]
pub struct PutSessionRequest {
    /// <p><p>The message that Amazon Lex returns in the response can be either text or speech based depending on the value of this field.</p> <ul> <li> <p>If the value is <code>text/plain; charset=utf-8</code>, Amazon Lex returns text in the response.</p> </li> <li> <p>If the value begins with <code>audio/</code>, Amazon Lex returns speech in the response. Amazon Lex uses Amazon Polly to generate the speech in the configuration that you specify. For example, if you specify <code>audio/mpeg</code> as the value, Amazon Lex returns speech in the MPEG format.</p> </li> <li> <p>If the value is <code>audio/pcm</code>, the speech is returned as <code>audio/pcm</code> in 16-bit, little endian format.</p> </li> <li> <p>The following are the accepted values:</p> <ul> <li> <p> <code>audio/mpeg</code> </p> </li> <li> <p> <code>audio/ogg</code> </p> </li> <li> <p> <code>audio/pcm</code> </p> </li> <li> <p> <code>audio/*</code> (defaults to mpeg)</p> </li> <li> <p> <code>text/plain; charset=utf-8</code> </p> </li> </ul> </li> </ul></p>
    #[serde(rename = "accept")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub accept: Option<String>,
    /// <p>A list of contexts active for the request. A context can be activated when a previous intent is fulfilled, or by including the context in the request,</p> <p>If you don't specify a list of contexts, Amazon Lex will use the current list of contexts for the session. If you specify an empty list, all contexts for the session are cleared.</p>
    #[serde(rename = "activeContexts")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub active_contexts: Option<Vec<ActiveContext>>,
    /// <p>The alias in use for the bot that contains the session data.</p>
    #[serde(rename = "botAlias")]
    pub bot_alias: String,
    /// <p>The name of the bot that contains the session data.</p>
    #[serde(rename = "botName")]
    pub bot_name: String,
    /// <p>Sets the next action that the bot should take to fulfill the conversation.</p>
    #[serde(rename = "dialogAction")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub dialog_action: Option<DialogAction>,
    /// <p>A summary of the recent intents for the bot. You can use the intent summary view to set a checkpoint label on an intent and modify attributes of intents. You can also use it to remove or add intent summary objects to the list.</p> <p>An intent that you modify or add to the list must make sense for the bot. For example, the intent name must be valid for the bot. You must provide valid values for:</p> <ul> <li> <p> <code>intentName</code> </p> </li> <li> <p>slot names</p> </li> <li> <p> <code>slotToElict</code> </p> </li> </ul> <p>If you send the <code>recentIntentSummaryView</code> parameter in a <code>PutSession</code> request, the contents of the new summary view replaces the old summary view. For example, if a <code>GetSession</code> request returns three intents in the summary view and you call <code>PutSession</code> with one intent in the summary view, the next call to <code>GetSession</code> will only return one intent.</p>
    #[serde(rename = "recentIntentSummaryView")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub recent_intent_summary_view: Option<Vec<IntentSummary>>,
    /// <p>Map of key/value pairs representing the session-specific context information. It contains application information passed between Amazon Lex and a client application.</p>
    #[serde(rename = "sessionAttributes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub session_attributes: Option<::std::collections::HashMap<String, String>>,
    /// <p>The ID of the client application user. Amazon Lex uses this to identify a user's conversation with your bot. </p>
    #[serde(rename = "userId")]
    pub user_id: String,
}

#[derive(Clone, Debug, Default, PartialEq)]
pub struct PutSessionResponse {
    /// <p>A list of active contexts for the session.</p>
    pub active_contexts: Option<String>,
    /// <p>The audio version of the message to convey to the user.</p>
    pub audio_stream: Option<bytes::Bytes>,
    /// <p>Content type as specified in the <code>Accept</code> HTTP header in the request.</p>
    pub content_type: Option<String>,
    /// <p><p/> <ul> <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a &quot;yes&quot; or &quot;no&quot; response to confirm the intent before fulfilling an intent.</p> </li> <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit the user&#39;s intent.</p> </li> <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting the value of a slot for the current intent.</p> </li> <li> <p> <code>Failed</code> - Conveys that the conversation with the user has failed. This can happen for various reasons, including the user does not provide an appropriate response to prompts from the service, or if the Lambda function fails to fulfill the intent.</p> </li> <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function has sucessfully fulfilled the intent.</p> </li> <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent.</p> </li> </ul></p>
    pub dialog_state: Option<String>,
    /// <p>The next message that should be presented to the user.</p> <p>The <code>encodedMessage</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
    pub encoded_message: Option<String>,
    /// <p>The name of the current intent.</p>
    pub intent_name: Option<String>,
    /// <p><p>The format of the response message. One of the following values:</p> <ul> <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li> <li> <p> <code>CustomPayload</code> - The message is a custom format for the client.</p> </li> <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li> <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li> </ul></p>
    pub message_format: Option<String>,
    /// <p>Map of key/value pairs representing session-specific context information.</p>
    pub session_attributes: Option<String>,
    /// <p>A unique identifier for the session.</p>
    pub session_id: Option<String>,
    /// <p>If the <code>dialogState</code> is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value.</p>
    pub slot_to_elicit: Option<String>,
    /// <p>Map of zero or more intent slots Amazon Lex detected from the user input during the conversation.</p> <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code> the default is <code>ORIGINAL_VALUE</code>. </p>
    pub slots: Option<String>,
}

/// <p>If you configure a response card when creating your bots, Amazon Lex substitutes the session attributes and slot values that are available, and then returns it. The response card can also come from a Lambda function ( <code>dialogCodeHook</code> and <code>fulfillmentActivity</code> on an intent).</p>
#[derive(Clone, Debug, Default, Deserialize, PartialEq)]
#[cfg_attr(any(test, feature = "serialize_structs"), derive(Serialize))]
pub struct ResponseCard {
    /// <p>The content type of the response.</p>
    #[serde(rename = "contentType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub content_type: Option<String>,
    /// <p>An array of attachment objects representing options.</p>
    #[serde(rename = "genericAttachments")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub generic_attachments: Option<Vec<GenericAttachment>>,
    /// <p>The version of the response card format.</p>
    #[serde(rename = "version")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub version: Option<String>,
}

/// <p>The sentiment expressed in an utterance.</p> <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field structure contains the result of the analysis.</p>
#[derive(Clone, Debug, Default, Deserialize, PartialEq)]
#[cfg_attr(any(test, feature = "serialize_structs"), derive(Serialize))]
pub struct SentimentResponse {
    /// <p>The inferred sentiment that Amazon Comprehend has the highest confidence in.</p>
    #[serde(rename = "sentimentLabel")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sentiment_label: Option<String>,
    /// <p>The likelihood that the sentiment was correctly inferred.</p>
    #[serde(rename = "sentimentScore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sentiment_score: Option<String>,
}

/// Errors returned by DeleteSession
#[derive(Debug, PartialEq)]
pub enum DeleteSessionError {
    /// <p> Request validation failed, there is no usable message in the context, or the bot build failed, is still in progress, or contains unbuilt changes. </p>
    BadRequest(String),
    /// <p> Two clients are using the same AWS account, Amazon Lex bot, and user ID. </p>
    Conflict(String),
    /// <p>Internal service error. Retry the call.</p>
    InternalFailure(String),
    /// <p>Exceeded a limit.</p>
    LimitExceeded(String),
    /// <p>The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.</p>
    NotFound(String),
}

impl DeleteSessionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteSessionError> {
        if let Some(err) = proto::json::Error::parse_rest(&res) {
            match err.typ.as_str() {
                "BadRequestException" => {
                    return RusotoError::Service(DeleteSessionError::BadRequest(err.msg))
                }
                "ConflictException" => {
                    return RusotoError::Service(DeleteSessionError::Conflict(err.msg))
                }
                "InternalFailureException" => {
                    return RusotoError::Service(DeleteSessionError::InternalFailure(err.msg))
                }
                "LimitExceededException" => {
                    return RusotoError::Service(DeleteSessionError::LimitExceeded(err.msg))
                }
                "NotFoundException" => {
                    return RusotoError::Service(DeleteSessionError::NotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        RusotoError::Unknown(res)
    }
}
impl fmt::Display for DeleteSessionError {
    #[allow(unused_variables)]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            DeleteSessionError::BadRequest(ref cause) => write!(f, "{}", cause),
            DeleteSessionError::Conflict(ref cause) => write!(f, "{}", cause),
            DeleteSessionError::InternalFailure(ref cause) => write!(f, "{}", cause),
            DeleteSessionError::LimitExceeded(ref cause) => write!(f, "{}", cause),
            DeleteSessionError::NotFound(ref cause) => write!(f, "{}", cause),
        }
    }
}
impl Error for DeleteSessionError {}
/// Errors returned by GetSession
#[derive(Debug, PartialEq)]
pub enum GetSessionError {
    /// <p> Request validation failed, there is no usable message in the context, or the bot build failed, is still in progress, or contains unbuilt changes. </p>
    BadRequest(String),
    /// <p>Internal service error. Retry the call.</p>
    InternalFailure(String),
    /// <p>Exceeded a limit.</p>
    LimitExceeded(String),
    /// <p>The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.</p>
    NotFound(String),
}

impl GetSessionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<GetSessionError> {
        if let Some(err) = proto::json::Error::parse_rest(&res) {
            match err.typ.as_str() {
                "BadRequestException" => {
                    return RusotoError::Service(GetSessionError::BadRequest(err.msg))
                }
                "InternalFailureException" => {
                    return RusotoError::Service(GetSessionError::InternalFailure(err.msg))
                }
                "LimitExceededException" => {
                    return RusotoError::Service(GetSessionError::LimitExceeded(err.msg))
                }
                "NotFoundException" => {
                    return RusotoError::Service(GetSessionError::NotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        RusotoError::Unknown(res)
    }
}
impl fmt::Display for GetSessionError {
    #[allow(unused_variables)]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            GetSessionError::BadRequest(ref cause) => write!(f, "{}", cause),
            GetSessionError::InternalFailure(ref cause) => write!(f, "{}", cause),
            GetSessionError::LimitExceeded(ref cause) => write!(f, "{}", cause),
            GetSessionError::NotFound(ref cause) => write!(f, "{}", cause),
        }
    }
}
impl Error for GetSessionError {}
/// Errors returned by PostContent
#[derive(Debug, PartialEq)]
pub enum PostContentError {
    /// <p>Either the Amazon Lex bot is still building, or one of the dependent services (Amazon Polly, AWS Lambda) failed with an internal service error.</p>
    BadGateway(String),
    /// <p> Request validation failed, there is no usable message in the context, or the bot build failed, is still in progress, or contains unbuilt changes. </p>
    BadRequest(String),
    /// <p> Two clients are using the same AWS account, Amazon Lex bot, and user ID. </p>
    Conflict(String),
    /// <p><p> One of the dependencies, such as AWS Lambda or Amazon Polly, threw an exception. For example, </p> <ul> <li> <p>If Amazon Lex does not have sufficient permissions to call a Lambda function.</p> </li> <li> <p>If a Lambda function takes longer than 30 seconds to execute.</p> </li> <li> <p>If a fulfillment Lambda function returns a <code>Delegate</code> dialog action without removing any slot values.</p> </li> </ul></p>
    DependencyFailed(String),
    /// <p>Internal service error. Retry the call.</p>
    InternalFailure(String),
    /// <p>Exceeded a limit.</p>
    LimitExceeded(String),
    /// <p>This exception is not used.</p>
    LoopDetected(String),
    /// <p>The accept header in the request does not have a valid value.</p>
    NotAcceptable(String),
    /// <p>The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.</p>
    NotFound(String),
    /// <p>The input speech is too long.</p>
    RequestTimeout(String),
    /// <p>The Content-Type header (<code>PostContent</code> API) has an invalid value. </p>
    UnsupportedMediaType(String),
}

impl PostContentError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<PostContentError> {
        if let Some(err) = proto::json::Error::parse_rest(&res) {
            match err.typ.as_str() {
                "BadGatewayException" => {
                    return RusotoError::Service(PostContentError::BadGateway(err.msg))
                }
                "BadRequestException" => {
                    return RusotoError::Service(PostContentError::BadRequest(err.msg))
                }
                "ConflictException" => {
                    return RusotoError::Service(PostContentError::Conflict(err.msg))
                }
                "DependencyFailedException" => {
                    return RusotoError::Service(PostContentError::DependencyFailed(err.msg))
                }
                "InternalFailureException" => {
                    return RusotoError::Service(PostContentError::InternalFailure(err.msg))
                }
                "LimitExceededException" => {
                    return RusotoError::Service(PostContentError::LimitExceeded(err.msg))
                }
                "LoopDetectedException" => {
                    return RusotoError::Service(PostContentError::LoopDetected(err.msg))
                }
                "NotAcceptableException" => {
                    return RusotoError::Service(PostContentError::NotAcceptable(err.msg))
                }
                "NotFoundException" => {
                    return RusotoError::Service(PostContentError::NotFound(err.msg))
                }
                "RequestTimeoutException" => {
                    return RusotoError::Service(PostContentError::RequestTimeout(err.msg))
                }
                "UnsupportedMediaTypeException" => {
                    return RusotoError::Service(PostContentError::UnsupportedMediaType(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        RusotoError::Unknown(res)
    }
}
impl fmt::Display for PostContentError {
    #[allow(unused_variables)]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            PostContentError::BadGateway(ref cause) => write!(f, "{}", cause),
            PostContentError::BadRequest(ref cause) => write!(f, "{}", cause),
            PostContentError::Conflict(ref cause) => write!(f, "{}", cause),
            PostContentError::DependencyFailed(ref cause) => write!(f, "{}", cause),
            PostContentError::InternalFailure(ref cause) => write!(f, "{}", cause),
            PostContentError::LimitExceeded(ref cause) => write!(f, "{}", cause),
            PostContentError::LoopDetected(ref cause) => write!(f, "{}", cause),
            PostContentError::NotAcceptable(ref cause) => write!(f, "{}", cause),
            PostContentError::NotFound(ref cause) => write!(f, "{}", cause),
            PostContentError::RequestTimeout(ref cause) => write!(f, "{}", cause),
            PostContentError::UnsupportedMediaType(ref cause) => write!(f, "{}", cause),
        }
    }
}
impl Error for PostContentError {}
/// Errors returned by PostText
#[derive(Debug, PartialEq)]
pub enum PostTextError {
    /// <p>Either the Amazon Lex bot is still building, or one of the dependent services (Amazon Polly, AWS Lambda) failed with an internal service error.</p>
    BadGateway(String),
    /// <p> Request validation failed, there is no usable message in the context, or the bot build failed, is still in progress, or contains unbuilt changes. </p>
    BadRequest(String),
    /// <p> Two clients are using the same AWS account, Amazon Lex bot, and user ID. </p>
    Conflict(String),
    /// <p><p> One of the dependencies, such as AWS Lambda or Amazon Polly, threw an exception. For example, </p> <ul> <li> <p>If Amazon Lex does not have sufficient permissions to call a Lambda function.</p> </li> <li> <p>If a Lambda function takes longer than 30 seconds to execute.</p> </li> <li> <p>If a fulfillment Lambda function returns a <code>Delegate</code> dialog action without removing any slot values.</p> </li> </ul></p>
    DependencyFailed(String),
    /// <p>Internal service error. Retry the call.</p>
    InternalFailure(String),
    /// <p>Exceeded a limit.</p>
    LimitExceeded(String),
    /// <p>This exception is not used.</p>
    LoopDetected(String),
    /// <p>The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.</p>
    NotFound(String),
}

impl PostTextError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<PostTextError> {
        if let Some(err) = proto::json::Error::parse_rest(&res) {
            match err.typ.as_str() {
                "BadGatewayException" => {
                    return RusotoError::Service(PostTextError::BadGateway(err.msg))
                }
                "BadRequestException" => {
                    return RusotoError::Service(PostTextError::BadRequest(err.msg))
                }
                "ConflictException" => {
                    return RusotoError::Service(PostTextError::Conflict(err.msg))
                }
                "DependencyFailedException" => {
                    return RusotoError::Service(PostTextError::DependencyFailed(err.msg))
                }
                "InternalFailureException" => {
                    return RusotoError::Service(PostTextError::InternalFailure(err.msg))
                }
                "LimitExceededException" => {
                    return RusotoError::Service(PostTextError::LimitExceeded(err.msg))
                }
                "LoopDetectedException" => {
                    return RusotoError::Service(PostTextError::LoopDetected(err.msg))
                }
                "NotFoundException" => {
                    return RusotoError::Service(PostTextError::NotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        RusotoError::Unknown(res)
    }
}
impl fmt::Display for PostTextError {
    #[allow(unused_variables)]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            PostTextError::BadGateway(ref cause) => write!(f, "{}", cause),
            PostTextError::BadRequest(ref cause) => write!(f, "{}", cause),
            PostTextError::Conflict(ref cause) => write!(f, "{}", cause),
            PostTextError::DependencyFailed(ref cause) => write!(f, "{}", cause),
            PostTextError::InternalFailure(ref cause) => write!(f, "{}", cause),
            PostTextError::LimitExceeded(ref cause) => write!(f, "{}", cause),
            PostTextError::LoopDetected(ref cause) => write!(f, "{}", cause),
            PostTextError::NotFound(ref cause) => write!(f, "{}", cause),
        }
    }
}
impl Error for PostTextError {}
/// Errors returned by PutSession
#[derive(Debug, PartialEq)]
pub enum PutSessionError {
    /// <p>Either the Amazon Lex bot is still building, or one of the dependent services (Amazon Polly, AWS Lambda) failed with an internal service error.</p>
    BadGateway(String),
    /// <p> Request validation failed, there is no usable message in the context, or the bot build failed, is still in progress, or contains unbuilt changes. </p>
    BadRequest(String),
    /// <p> Two clients are using the same AWS account, Amazon Lex bot, and user ID. </p>
    Conflict(String),
    /// <p><p> One of the dependencies, such as AWS Lambda or Amazon Polly, threw an exception. For example, </p> <ul> <li> <p>If Amazon Lex does not have sufficient permissions to call a Lambda function.</p> </li> <li> <p>If a Lambda function takes longer than 30 seconds to execute.</p> </li> <li> <p>If a fulfillment Lambda function returns a <code>Delegate</code> dialog action without removing any slot values.</p> </li> </ul></p>
    DependencyFailed(String),
    /// <p>Internal service error. Retry the call.</p>
    InternalFailure(String),
    /// <p>Exceeded a limit.</p>
    LimitExceeded(String),
    /// <p>The accept header in the request does not have a valid value.</p>
    NotAcceptable(String),
    /// <p>The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.</p>
    NotFound(String),
}

impl PutSessionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<PutSessionError> {
        if let Some(err) = proto::json::Error::parse_rest(&res) {
            match err.typ.as_str() {
                "BadGatewayException" => {
                    return RusotoError::Service(PutSessionError::BadGateway(err.msg))
                }
                "BadRequestException" => {
                    return RusotoError::Service(PutSessionError::BadRequest(err.msg))
                }
                "ConflictException" => {
                    return RusotoError::Service(PutSessionError::Conflict(err.msg))
                }
                "DependencyFailedException" => {
                    return RusotoError::Service(PutSessionError::DependencyFailed(err.msg))
                }
                "InternalFailureException" => {
                    return RusotoError::Service(PutSessionError::InternalFailure(err.msg))
                }
                "LimitExceededException" => {
                    return RusotoError::Service(PutSessionError::LimitExceeded(err.msg))
                }
                "NotAcceptableException" => {
                    return RusotoError::Service(PutSessionError::NotAcceptable(err.msg))
                }
                "NotFoundException" => {
                    return RusotoError::Service(PutSessionError::NotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        RusotoError::Unknown(res)
    }
}
impl fmt::Display for PutSessionError {
    #[allow(unused_variables)]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            PutSessionError::BadGateway(ref cause) => write!(f, "{}", cause),
            PutSessionError::BadRequest(ref cause) => write!(f, "{}", cause),
            PutSessionError::Conflict(ref cause) => write!(f, "{}", cause),
            PutSessionError::DependencyFailed(ref cause) => write!(f, "{}", cause),
            PutSessionError::InternalFailure(ref cause) => write!(f, "{}", cause),
            PutSessionError::LimitExceeded(ref cause) => write!(f, "{}", cause),
            PutSessionError::NotAcceptable(ref cause) => write!(f, "{}", cause),
            PutSessionError::NotFound(ref cause) => write!(f, "{}", cause),
        }
    }
}
impl Error for PutSessionError {}
/// Trait representing the capabilities of the Amazon Lex Runtime Service API. Amazon Lex Runtime Service clients implement this trait.
#[async_trait]
pub trait LexRuntime {
    /// <p>Removes session information for a specified bot, alias, and user ID. </p>
    async fn delete_session(
        &self,
        input: DeleteSessionRequest,
    ) -> Result<DeleteSessionResponse, RusotoError<DeleteSessionError>>;

    /// <p>Returns session information for a specified bot, alias, and user ID.</p>
    async fn get_session(
        &self,
        input: GetSessionRequest,
    ) -> Result<GetSessionResponse, RusotoError<GetSessionError>>;

    /// <p> Sends user input (text or speech) to Amazon Lex. Clients use this API to send text and audio requests to Amazon Lex at runtime. Amazon Lex interprets the user input using the machine learning model that it built for the bot. </p> <p>The <code>PostContent</code> operation supports audio input at 8kHz and 16kHz. You can use 8kHz audio to achieve higher speech recognition accuracy in telephone audio applications. </p> <p> In response, Amazon Lex returns the next message to convey to the user. Consider the following example messages: </p> <ul> <li> <p> For a user input "I would like a pizza," Amazon Lex might return a response with a message eliciting slot data (for example, <code>PizzaSize</code>): "What size pizza would you like?". </p> </li> <li> <p> After the user provides all of the pizza order information, Amazon Lex might return a response with a message to get user confirmation: "Order the pizza?". </p> </li> <li> <p> After the user replies "Yes" to the confirmation prompt, Amazon Lex might return a conclusion statement: "Thank you, your cheese pizza has been ordered.". </p> </li> </ul> <p> Not all Amazon Lex messages require a response from the user. For example, conclusion statements do not require a response. Some messages require only a yes or no response. In addition to the <code>message</code>, Amazon Lex provides additional context about the message in the response that you can use to enhance client behavior, such as displaying the appropriate client user interface. Consider the following examples: </p> <ul> <li> <p> If the message is to elicit slot data, Amazon Lex returns the following context information: </p> <ul> <li> <p> <code>x-amz-lex-dialog-state</code> header set to <code>ElicitSlot</code> </p> </li> <li> <p> <code>x-amz-lex-intent-name</code> header set to the intent name in the current context </p> </li> <li> <p> <code>x-amz-lex-slot-to-elicit</code> header set to the slot name for which the <code>message</code> is eliciting information </p> </li> <li> <p> <code>x-amz-lex-slots</code> header set to a map of slots configured for the intent with their current values </p> </li> </ul> </li> <li> <p> If the message is a confirmation prompt, the <code>x-amz-lex-dialog-state</code> header is set to <code>Confirmation</code> and the <code>x-amz-lex-slot-to-elicit</code> header is omitted. </p> </li> <li> <p> If the message is a clarification prompt configured for the intent, indicating that the user intent is not understood, the <code>x-amz-dialog-state</code> header is set to <code>ElicitIntent</code> and the <code>x-amz-slot-to-elicit</code> header is omitted. </p> </li> </ul> <p> In addition, Amazon Lex also returns your application-specific <code>sessionAttributes</code>. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html">Managing Conversation Context</a>. </p>
    async fn post_content(
        &self,
        input: PostContentRequest,
    ) -> Result<PostContentResponse, RusotoError<PostContentError>>;

    /// <p>Sends user input to Amazon Lex. Client applications can use this API to send requests to Amazon Lex at runtime. Amazon Lex then interprets the user input using the machine learning model it built for the bot. </p> <p> In response, Amazon Lex returns the next <code>message</code> to convey to the user an optional <code>responseCard</code> to display. Consider the following example messages: </p> <ul> <li> <p> For a user input "I would like a pizza", Amazon Lex might return a response with a message eliciting slot data (for example, PizzaSize): "What size pizza would you like?" </p> </li> <li> <p> After the user provides all of the pizza order information, Amazon Lex might return a response with a message to obtain user confirmation "Proceed with the pizza order?". </p> </li> <li> <p> After the user replies to a confirmation prompt with a "yes", Amazon Lex might return a conclusion statement: "Thank you, your cheese pizza has been ordered.". </p> </li> </ul> <p> Not all Amazon Lex messages require a user response. For example, a conclusion statement does not require a response. Some messages require only a "yes" or "no" user response. In addition to the <code>message</code>, Amazon Lex provides additional context about the message in the response that you might use to enhance client behavior, for example, to display the appropriate client user interface. These are the <code>slotToElicit</code>, <code>dialogState</code>, <code>intentName</code>, and <code>slots</code> fields in the response. Consider the following examples: </p> <ul> <li> <p>If the message is to elicit slot data, Amazon Lex returns the following context information:</p> <ul> <li> <p> <code>dialogState</code> set to ElicitSlot </p> </li> <li> <p> <code>intentName</code> set to the intent name in the current context </p> </li> <li> <p> <code>slotToElicit</code> set to the slot name for which the <code>message</code> is eliciting information </p> </li> <li> <p> <code>slots</code> set to a map of slots, configured for the intent, with currently known values </p> </li> </ul> </li> <li> <p> If the message is a confirmation prompt, the <code>dialogState</code> is set to ConfirmIntent and <code>SlotToElicit</code> is set to null. </p> </li> <li> <p>If the message is a clarification prompt (configured for the intent) that indicates that user intent is not understood, the <code>dialogState</code> is set to ElicitIntent and <code>slotToElicit</code> is set to null. </p> </li> </ul> <p> In addition, Amazon Lex also returns your application-specific <code>sessionAttributes</code>. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html">Managing Conversation Context</a>. </p>
    async fn post_text(
        &self,
        input: PostTextRequest,
    ) -> Result<PostTextResponse, RusotoError<PostTextError>>;

    /// <p>Creates a new session or modifies an existing session with an Amazon Lex bot. Use this operation to enable your application to set the state of the bot.</p> <p>For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/how-session-api.html">Managing Sessions</a>.</p>
    async fn put_session(
        &self,
        input: PutSessionRequest,
    ) -> Result<PutSessionResponse, RusotoError<PutSessionError>>;
}
/// A client for the Amazon Lex Runtime Service API.
#[derive(Clone)]
pub struct LexRuntimeClient {
    client: Client,
    region: region::Region,
}

impl LexRuntimeClient {
    /// Creates a client backed by the default tokio event loop.
    ///
    /// The client will use the default credentials provider and tls client.
    pub fn new(region: region::Region) -> LexRuntimeClient {
        LexRuntimeClient {
            client: Client::shared(),
            region,
        }
    }

    pub fn new_with<P, D>(
        request_dispatcher: D,
        credentials_provider: P,
        region: region::Region,
    ) -> LexRuntimeClient
    where
        P: ProvideAwsCredentials + Send + Sync + 'static,
        D: DispatchSignedRequest + Send + Sync + 'static,
    {
        LexRuntimeClient {
            client: Client::new_with(credentials_provider, request_dispatcher),
            region,
        }
    }

    pub fn new_with_client(client: Client, region: region::Region) -> LexRuntimeClient {
        LexRuntimeClient { client, region }
    }
}

#[async_trait]
impl LexRuntime for LexRuntimeClient {
    /// <p>Removes session information for a specified bot, alias, and user ID. </p>
    #[allow(unused_mut)]
    async fn delete_session(
        &self,
        input: DeleteSessionRequest,
    ) -> Result<DeleteSessionResponse, RusotoError<DeleteSessionError>> {
        let request_uri = format!(
            "/bot/{bot_name}/alias/{bot_alias}/user/{user_id}/session",
            bot_alias = input.bot_alias,
            bot_name = input.bot_name,
            user_id = input.user_id
        );

        let mut request = SignedRequest::new("DELETE", "lex", &self.region, &request_uri);
        request.set_content_type("application/x-amz-json-1.1".to_owned());

        request.set_endpoint_prefix("runtime.lex".to_string());

        let mut response = self
            .client
            .sign_and_dispatch(request)
            .await
            .map_err(RusotoError::from)?;
        if response.status.is_success() {
            let mut response = response.buffer().await.map_err(RusotoError::HttpDispatch)?;
            let result = proto::json::ResponsePayload::new(&response)
                .deserialize::<DeleteSessionResponse, _>()?;

            Ok(result)
        } else {
            let response = response.buffer().await.map_err(RusotoError::HttpDispatch)?;
            Err(DeleteSessionError::from_response(response))
        }
    }

    /// <p>Returns session information for a specified bot, alias, and user ID.</p>
    #[allow(unused_mut)]
    async fn get_session(
        &self,
        input: GetSessionRequest,
    ) -> Result<GetSessionResponse, RusotoError<GetSessionError>> {
        let request_uri = format!(
            "/bot/{bot_name}/alias/{bot_alias}/user/{user_id}/session/",
            bot_alias = input.bot_alias,
            bot_name = input.bot_name,
            user_id = input.user_id
        );

        let mut request = SignedRequest::new("GET", "lex", &self.region, &request_uri);
        request.set_content_type("application/x-amz-json-1.1".to_owned());

        request.set_endpoint_prefix("runtime.lex".to_string());

        let mut params = Params::new();
        if let Some(ref x) = input.checkpoint_label_filter {
            params.put("checkpointLabelFilter", x);
        }
        request.set_params(params);

        let mut response = self
            .client
            .sign_and_dispatch(request)
            .await
            .map_err(RusotoError::from)?;
        if response.status.is_success() {
            let mut response = response.buffer().await.map_err(RusotoError::HttpDispatch)?;
            let result = proto::json::ResponsePayload::new(&response)
                .deserialize::<GetSessionResponse, _>()?;

            Ok(result)
        } else {
            let response = response.buffer().await.map_err(RusotoError::HttpDispatch)?;
            Err(GetSessionError::from_response(response))
        }
    }

    /// <p> Sends user input (text or speech) to Amazon Lex. Clients use this API to send text and audio requests to Amazon Lex at runtime. Amazon Lex interprets the user input using the machine learning model that it built for the bot. </p> <p>The <code>PostContent</code> operation supports audio input at 8kHz and 16kHz. You can use 8kHz audio to achieve higher speech recognition accuracy in telephone audio applications. </p> <p> In response, Amazon Lex returns the next message to convey to the user. Consider the following example messages: </p> <ul> <li> <p> For a user input "I would like a pizza," Amazon Lex might return a response with a message eliciting slot data (for example, <code>PizzaSize</code>): "What size pizza would you like?". </p> </li> <li> <p> After the user provides all of the pizza order information, Amazon Lex might return a response with a message to get user confirmation: "Order the pizza?". </p> </li> <li> <p> After the user replies "Yes" to the confirmation prompt, Amazon Lex might return a conclusion statement: "Thank you, your cheese pizza has been ordered.". </p> </li> </ul> <p> Not all Amazon Lex messages require a response from the user. For example, conclusion statements do not require a response. Some messages require only a yes or no response. In addition to the <code>message</code>, Amazon Lex provides additional context about the message in the response that you can use to enhance client behavior, such as displaying the appropriate client user interface. Consider the following examples: </p> <ul> <li> <p> If the message is to elicit slot data, Amazon Lex returns the following context information: </p> <ul> <li> <p> <code>x-amz-lex-dialog-state</code> header set to <code>ElicitSlot</code> </p> </li> <li> <p> <code>x-amz-lex-intent-name</code> header set to the intent name in the current context </p> </li> <li> <p> <code>x-amz-lex-slot-to-elicit</code> header set to the slot name for which the <code>message</code> is eliciting information </p> </li> <li> <p> <code>x-amz-lex-slots</code> header set to a map of slots configured for the intent with their current values </p> </li> </ul> </li> <li> <p> If the message is a confirmation prompt, the <code>x-amz-lex-dialog-state</code> header is set to <code>Confirmation</code> and the <code>x-amz-lex-slot-to-elicit</code> header is omitted. </p> </li> <li> <p> If the message is a clarification prompt configured for the intent, indicating that the user intent is not understood, the <code>x-amz-dialog-state</code> header is set to <code>ElicitIntent</code> and the <code>x-amz-slot-to-elicit</code> header is omitted. </p> </li> </ul> <p> In addition, Amazon Lex also returns your application-specific <code>sessionAttributes</code>. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html">Managing Conversation Context</a>. </p>
    #[allow(unused_mut)]
    async fn post_content(
        &self,
        input: PostContentRequest,
    ) -> Result<PostContentResponse, RusotoError<PostContentError>> {
        let request_uri = format!(
            "/bot/{bot_name}/alias/{bot_alias}/user/{user_id}/content",
            bot_alias = input.bot_alias,
            bot_name = input.bot_name,
            user_id = input.user_id
        );

        let mut request = SignedRequest::new("POST", "lex", &self.region, &request_uri);
        request.set_content_type("application/x-amz-json-1.1".to_owned());

        request.set_endpoint_prefix("runtime.lex".to_string());
        let encoded = Some(input.input_stream.to_owned());
        request.set_payload(encoded);
        request.add_optional_header("Accept", input.accept.as_ref());
        request.add_optional_header("x-amz-lex-active-contexts", input.active_contexts.as_ref());
        request.add_header("Content-Type", &input.content_type.to_string());
        request.add_optional_header(
            "x-amz-lex-request-attributes",
            input.request_attributes.as_ref(),
        );
        request.add_optional_header(
            "x-amz-lex-session-attributes",
            input.session_attributes.as_ref(),
        );

        let mut response = self
            .client
            .sign_and_dispatch(request)
            .await
            .map_err(RusotoError::from)?;
        if response.status.is_success() {
            let mut response = response.buffer().await.map_err(RusotoError::HttpDispatch)?;

            let mut result = PostContentResponse::default();
            result.audio_stream = Some(response.body);

            result.active_contexts = response.headers.remove("x-amz-lex-active-contexts");
            result.alternative_intents = response.headers.remove("x-amz-lex-alternative-intents");
            result.bot_version = response.headers.remove("x-amz-lex-bot-version");
            result.content_type = response.headers.remove("Content-Type");
            result.dialog_state = response.headers.remove("x-amz-lex-dialog-state");
            result.encoded_input_transcript = response
                .headers
                .remove("x-amz-lex-encoded-input-transcript");
            result.encoded_message = response.headers.remove("x-amz-lex-encoded-message");
            result.intent_name = response.headers.remove("x-amz-lex-intent-name");
            result.message_format = response.headers.remove("x-amz-lex-message-format");
            result.nlu_intent_confidence =
                response.headers.remove("x-amz-lex-nlu-intent-confidence");
            result.sentiment_response = response.headers.remove("x-amz-lex-sentiment");
            result.session_attributes = response.headers.remove("x-amz-lex-session-attributes");
            result.session_id = response.headers.remove("x-amz-lex-session-id");
            result.slot_to_elicit = response.headers.remove("x-amz-lex-slot-to-elicit");
            result.slots = response.headers.remove("x-amz-lex-slots");

            Ok(result)
        } else {
            let response = response.buffer().await.map_err(RusotoError::HttpDispatch)?;
            Err(PostContentError::from_response(response))
        }
    }

    /// <p>Sends user input to Amazon Lex. Client applications can use this API to send requests to Amazon Lex at runtime. Amazon Lex then interprets the user input using the machine learning model it built for the bot. </p> <p> In response, Amazon Lex returns the next <code>message</code> to convey to the user an optional <code>responseCard</code> to display. Consider the following example messages: </p> <ul> <li> <p> For a user input "I would like a pizza", Amazon Lex might return a response with a message eliciting slot data (for example, PizzaSize): "What size pizza would you like?" </p> </li> <li> <p> After the user provides all of the pizza order information, Amazon Lex might return a response with a message to obtain user confirmation "Proceed with the pizza order?". </p> </li> <li> <p> After the user replies to a confirmation prompt with a "yes", Amazon Lex might return a conclusion statement: "Thank you, your cheese pizza has been ordered.". </p> </li> </ul> <p> Not all Amazon Lex messages require a user response. For example, a conclusion statement does not require a response. Some messages require only a "yes" or "no" user response. In addition to the <code>message</code>, Amazon Lex provides additional context about the message in the response that you might use to enhance client behavior, for example, to display the appropriate client user interface. These are the <code>slotToElicit</code>, <code>dialogState</code>, <code>intentName</code>, and <code>slots</code> fields in the response. Consider the following examples: </p> <ul> <li> <p>If the message is to elicit slot data, Amazon Lex returns the following context information:</p> <ul> <li> <p> <code>dialogState</code> set to ElicitSlot </p> </li> <li> <p> <code>intentName</code> set to the intent name in the current context </p> </li> <li> <p> <code>slotToElicit</code> set to the slot name for which the <code>message</code> is eliciting information </p> </li> <li> <p> <code>slots</code> set to a map of slots, configured for the intent, with currently known values </p> </li> </ul> </li> <li> <p> If the message is a confirmation prompt, the <code>dialogState</code> is set to ConfirmIntent and <code>SlotToElicit</code> is set to null. </p> </li> <li> <p>If the message is a clarification prompt (configured for the intent) that indicates that user intent is not understood, the <code>dialogState</code> is set to ElicitIntent and <code>slotToElicit</code> is set to null. </p> </li> </ul> <p> In addition, Amazon Lex also returns your application-specific <code>sessionAttributes</code>. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html">Managing Conversation Context</a>. </p>
    #[allow(unused_mut)]
    async fn post_text(
        &self,
        input: PostTextRequest,
    ) -> Result<PostTextResponse, RusotoError<PostTextError>> {
        let request_uri = format!(
            "/bot/{bot_name}/alias/{bot_alias}/user/{user_id}/text",
            bot_alias = input.bot_alias,
            bot_name = input.bot_name,
            user_id = input.user_id
        );

        let mut request = SignedRequest::new("POST", "lex", &self.region, &request_uri);
        request.set_content_type("application/x-amz-json-1.1".to_owned());

        request.set_endpoint_prefix("runtime.lex".to_string());
        let encoded = Some(serde_json::to_vec(&input).unwrap());
        request.set_payload(encoded);

        let mut response = self
            .client
            .sign_and_dispatch(request)
            .await
            .map_err(RusotoError::from)?;
        if response.status.is_success() {
            let mut response = response.buffer().await.map_err(RusotoError::HttpDispatch)?;
            let result = proto::json::ResponsePayload::new(&response)
                .deserialize::<PostTextResponse, _>()?;

            Ok(result)
        } else {
            let response = response.buffer().await.map_err(RusotoError::HttpDispatch)?;
            Err(PostTextError::from_response(response))
        }
    }

    /// <p>Creates a new session or modifies an existing session with an Amazon Lex bot. Use this operation to enable your application to set the state of the bot.</p> <p>For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/how-session-api.html">Managing Sessions</a>.</p>
    #[allow(unused_mut)]
    async fn put_session(
        &self,
        input: PutSessionRequest,
    ) -> Result<PutSessionResponse, RusotoError<PutSessionError>> {
        let request_uri = format!(
            "/bot/{bot_name}/alias/{bot_alias}/user/{user_id}/session",
            bot_alias = input.bot_alias,
            bot_name = input.bot_name,
            user_id = input.user_id
        );

        let mut request = SignedRequest::new("POST", "lex", &self.region, &request_uri);
        request.set_content_type("application/x-amz-json-1.1".to_owned());

        request.set_endpoint_prefix("runtime.lex".to_string());
        let encoded = Some(serde_json::to_vec(&input).unwrap());
        request.set_payload(encoded);
        request.add_optional_header("Accept", input.accept.as_ref());

        let mut response = self
            .client
            .sign_and_dispatch(request)
            .await
            .map_err(RusotoError::from)?;
        if response.status.is_success() {
            let mut response = response.buffer().await.map_err(RusotoError::HttpDispatch)?;

            let mut result = PutSessionResponse::default();
            result.audio_stream = Some(response.body);

            result.active_contexts = response.headers.remove("x-amz-lex-active-contexts");
            result.content_type = response.headers.remove("Content-Type");
            result.dialog_state = response.headers.remove("x-amz-lex-dialog-state");
            result.encoded_message = response.headers.remove("x-amz-lex-encoded-message");
            result.intent_name = response.headers.remove("x-amz-lex-intent-name");
            result.message_format = response.headers.remove("x-amz-lex-message-format");
            result.session_attributes = response.headers.remove("x-amz-lex-session-attributes");
            result.session_id = response.headers.remove("x-amz-lex-session-id");
            result.slot_to_elicit = response.headers.remove("x-amz-lex-slot-to-elicit");
            result.slots = response.headers.remove("x-amz-lex-slots");

            Ok(result)
        } else {
            let response = response.buffer().await.map_err(RusotoError::HttpDispatch)?;
            Err(PutSessionError::from_response(response))
        }
    }
}