1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
use crate::{
    FromValue, Function, Interface, Mut, Named, RawMut, RawRef, RawStr, Ref, ToValue,
    UnsafeFromValue, Value, VmError,
};
use std::fmt;
use std::iter;
use std::vec;

// Note: A fair amount of code in this module is duplicated from the Rust
// project under the MIT license.
//
// https://github.com/rust-lang/rust
//
// Copyright 2014-2020 The Rust Project Developers

/// Internal iterator trait used to build useful internal iterator abstractions,
/// like [Fuse].
trait RuneIterator: fmt::Debug {
    /// Test if the iterator is double-ended.
    fn is_double_ended(&self) -> bool;

    /// The length of the remaining iterator.
    fn size_hint(&self) -> (usize, Option<usize>);

    /// Get the next value out of the iterator.
    fn next(&mut self) -> Result<Option<Value>, VmError>;

    /// Get the next back value out of the iterator.
    fn next_back(&mut self) -> Result<Option<Value>, VmError>;

    /// Get the length of the iterator if it is an exact length iterator.
    #[inline]
    fn len(&self) -> Result<usize, VmError> {
        let (lower, upper) = self.size_hint();

        if !matches!(upper, Some(upper) if lower == upper) {
            return Err(VmError::panic(format!(
                "`{:?}` is not an exact-sized iterator",
                self
            )));
        }

        Ok(lower)
    }
}

/// Fuse the iterator if the expression is `None`.
macro_rules! fuse {
    ($self:ident . $iter:ident . $($call:tt)+) => {
        match $self.$iter {
            Some(ref mut iter) => match iter.$($call)+ {
                None => {
                    $self.$iter = None;
                    None
                }
                item => item,
            },
            None => None,
        }
    };
}

/// Try an iterator method without fusing,
/// like an inline `.as_mut().and_then(...)`
macro_rules! maybe {
    ($self:ident . $iter:ident . $($call:tt)+) => {
        match $self.$iter {
            Some(ref mut iter) => iter.$($call)+,
            None => None,
        }
    };
}

/// An owning iterator.
pub struct Iterator {
    iter: IterRepr,
}

impl Iterator {
    /// Construct a new owning iterator.
    ///
    /// The name is only intended to identify the iterator in case of errors.
    pub fn from<T>(name: &'static str, iter: T) -> Self
    where
        T: IteratorTrait,
    {
        Self {
            iter: IterRepr::Iterator(Box::new(IteratorObj { name, iter })),
        }
    }

    /// Construct a new double-ended owning iterator, with a human-readable
    /// name.
    ///
    /// The name is only intended to identify the iterator in case of errors.
    pub fn from_double_ended<T>(name: &'static str, iter: T) -> Self
    where
        T: DoubleEndedIteratorTrait,
    {
        Self {
            iter: IterRepr::DoubleEndedIterator(Box::new(IteratorObj { name, iter })),
        }
    }

    /// Get the size hint for the iterator.
    pub fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }

    /// Get the next value out of the iterator.
    pub fn next(&mut self) -> Result<Option<Value>, VmError> {
        self.iter.next()
    }

    /// Get the next back value out of the iterator.
    pub fn next_back(&mut self) -> Result<Option<Value>, VmError> {
        self.iter.next_back()
    }

    /// Enumerate the iterator.
    pub fn enumerate(self) -> Self {
        Self {
            iter: IterRepr::Enumerate(Box::new(Enumerate {
                iter: self.iter,
                count: 0,
            })),
        }
    }

    /// Map the iterator using the given function.
    pub fn map(self, map: Function) -> Self {
        Self {
            iter: IterRepr::Map(Box::new(Map {
                iter: self.iter,
                map,
            })),
        }
    }

    /// Map and flatten the iterator using the given function.
    pub fn flat_map(self, map: Function) -> Self {
        Self {
            iter: IterRepr::FlatMap(Box::new(FlatMap {
                map: Fuse::new(Map {
                    iter: self.iter,
                    map,
                }),
                frontiter: None,
                backiter: None,
            })),
        }
    }

    /// Filter the iterator using the given function.
    pub fn filter(self, filter: Function) -> Self {
        Self {
            iter: IterRepr::Filter(Box::new(Filter {
                iter: self.iter,
                filter,
            })),
        }
    }

    /// Chain this iterator with another.
    pub fn chain(self, other: Interface) -> Result<Self, VmError> {
        let other = other.into_iter()?;

        Ok(Self {
            iter: IterRepr::Chain(Box::new(Chain {
                a: Some(self.iter),
                b: Some(other.iter),
            })),
        })
    }

    /// Map the iterator using the given function.
    pub fn rev(self) -> Result<Self, VmError> {
        if !self.iter.is_double_ended() {
            return Err(VmError::panic(format!(
                "`{:?}` is not a double-ended iterator",
                self
            )));
        }

        Ok(Self {
            iter: match self.iter {
                // NB: reversing a reversed iterator restores the original
                // iterator.
                IterRepr::Rev(rev) => rev.iter,
                iter => IterRepr::Rev(Box::new(Rev { iter })),
            },
        })
    }

    /// Take the given number of elements from the iterator.
    pub fn take(self, n: usize) -> Self {
        Self {
            iter: IterRepr::Take(Box::new(Take { iter: self.iter, n })),
        }
    }

    /// Create a peekable iterator.
    pub fn peekable(self) -> Self {
        Self {
            iter: match self.iter {
                IterRepr::Peekable(peekable) => IterRepr::Peekable(peekable),
                iter => IterRepr::Peekable(Box::new(Peekable { iter, peeked: None })),
            },
        }
    }

    /// Peek the next element if supported.
    pub fn peek(&mut self) -> Result<Option<Value>, VmError> {
        match &mut self.iter {
            IterRepr::Peekable(peekable) => peekable.peek(),
            _ => Err(VmError::panic(format!(
                "`{:?}` is not a peekable iterator",
                self.iter
            ))),
        }
    }

    /// Collect results from the iterator.
    pub fn collect<T>(mut self) -> Result<vec::Vec<T>, VmError>
    where
        T: FromValue,
    {
        let (cap, _) = self.iter.size_hint();
        let mut vec = vec::Vec::with_capacity(cap);

        while let Some(value) = self.next()? {
            vec.push(T::from_value(value)?);
        }

        Ok(vec)
    }
}

impl fmt::Debug for Iterator {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&self.iter, f)
    }
}

impl Named for Iterator {
    const NAME: RawStr = RawStr::from_str("Iterator");
}

impl FromValue for Iterator {
    fn from_value(value: Value) -> Result<Self, VmError> {
        Ok(value.into_iterator()?.take()?)
    }
}

impl<'a> UnsafeFromValue for &'a Iterator {
    type Output = *const Iterator;
    type Guard = RawRef;

    fn from_value(value: Value) -> Result<(Self::Output, Self::Guard), VmError> {
        let iterator = value.into_iterator()?;
        Ok(Ref::into_raw(iterator.into_ref()?))
    }

    unsafe fn unsafe_coerce(output: Self::Output) -> Self {
        &*output
    }
}

impl<'a> UnsafeFromValue for &'a mut Iterator {
    type Output = *mut Iterator;
    type Guard = RawMut;

    fn from_value(value: Value) -> Result<(Self::Output, Self::Guard), VmError> {
        let iterator = value.into_iterator()?;
        Ok(Mut::into_raw(iterator.into_mut()?))
    }

    unsafe fn unsafe_coerce(output: Self::Output) -> Self {
        &mut *output
    }
}

/// The inner representation of an [Iterator]. It handles all the necessary
/// dynamic dispatch to support dynamic iterators.
enum IterRepr {
    Iterator(Box<IteratorObj<dyn IteratorTrait>>),
    DoubleEndedIterator(Box<IteratorObj<dyn DoubleEndedIteratorTrait>>),
    Map(Box<Map<Self>>),
    FlatMap(Box<FlatMap<Map<Self>>>),
    Filter(Box<Filter<Self>>),
    Rev(Box<Rev<Self>>),
    Chain(Box<Chain<Self, Self>>),
    Enumerate(Box<Enumerate<Self>>),
    Take(Box<Take<Self>>),
    Peekable(Box<Peekable<Self>>),
}

impl RuneIterator for IterRepr {
    /// Test if this iterator is double-ended.
    fn is_double_ended(&self) -> bool {
        match self {
            Self::Iterator(..) => false,
            Self::DoubleEndedIterator(..) => true,
            Self::Map(iter) => iter.is_double_ended(),
            Self::FlatMap(iter) => iter.is_double_ended(),
            Self::Filter(iter) => iter.is_double_ended(),
            Self::Rev(..) => true,
            Self::Chain(iter) => iter.is_double_ended(),
            Self::Enumerate(iter) => iter.is_double_ended(),
            Self::Take(iter) => iter.is_double_ended(),
            Self::Peekable(iter) => iter.is_double_ended(),
        }
    }

    /// The length of the remaining iterator.
    fn size_hint(&self) -> (usize, Option<usize>) {
        match self {
            Self::Iterator(iter) => iter.iter.size_hint(),
            Self::DoubleEndedIterator(iter) => iter.iter.size_hint(),
            Self::Map(iter) => iter.size_hint(),
            Self::FlatMap(iter) => iter.size_hint(),
            Self::Filter(iter) => iter.size_hint(),
            Self::Rev(iter) => iter.size_hint(),
            Self::Chain(iter) => iter.size_hint(),
            Self::Enumerate(iter) => iter.size_hint(),
            Self::Take(iter) => iter.size_hint(),
            Self::Peekable(iter) => iter.size_hint(),
        }
    }

    fn next(&mut self) -> Result<Option<Value>, VmError> {
        match self {
            Self::Iterator(iter) => iter.iter.next(),
            Self::DoubleEndedIterator(iter) => iter.iter.next(),
            Self::Map(iter) => iter.next(),
            Self::FlatMap(iter) => iter.next(),
            Self::Filter(iter) => iter.next(),
            Self::Rev(iter) => iter.next(),
            Self::Chain(iter) => iter.next(),
            Self::Enumerate(iter) => iter.next(),
            Self::Take(iter) => iter.next(),
            Self::Peekable(iter) => iter.next(),
        }
    }

    fn next_back(&mut self) -> Result<Option<Value>, VmError> {
        match self {
            Self::Iterator(iter) => {
                return Err(VmError::panic(format!(
                    "`{}` is not a double-ended iterator",
                    iter.name
                )));
            }
            Self::DoubleEndedIterator(iter) => iter.iter.next_back(),
            Self::Map(iter) => iter.next_back(),
            Self::FlatMap(iter) => iter.next_back(),
            Self::Filter(iter) => iter.next_back(),
            Self::Rev(iter) => iter.next_back(),
            Self::Chain(iter) => iter.next_back(),
            Self::Enumerate(iter) => iter.next_back(),
            Self::Take(iter) => iter.next_back(),
            Self::Peekable(iter) => iter.next_back(),
        }
    }
}

impl fmt::Debug for IterRepr {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::Iterator(iter) => write!(f, "{}", iter.name),
            Self::DoubleEndedIterator(iter) => write!(f, "{}", iter.name),
            Self::Map(iter) => write!(f, "{:?}", iter),
            Self::FlatMap(iter) => write!(f, "{:?}", iter),
            Self::Filter(iter) => write!(f, "{:?}", iter),
            Self::Rev(iter) => write!(f, "{:?}", iter),
            Self::Chain(iter) => write!(f, "{:?}", iter),
            Self::Enumerate(iter) => write!(f, "{:?}", iter),
            Self::Take(iter) => write!(f, "{:?}", iter),
            Self::Peekable(iter) => write!(f, "{:?}", iter),
        }
    }
}

#[derive(Debug)]
struct Map<I> {
    iter: I,
    map: Function,
}

impl<I> RuneIterator for Map<I>
where
    I: RuneIterator,
{
    fn is_double_ended(&self) -> bool {
        self.iter.is_double_ended()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }

    fn next(&mut self) -> Result<Option<Value>, VmError> {
        if let Some(value) = self.iter.next()? {
            let out = self.map.call::<_, Value>((value,))?;
            return Ok(Some(out));
        }

        Ok(None)
    }

    fn next_back(&mut self) -> Result<Option<Value>, VmError> {
        if let Some(value) = self.iter.next_back()? {
            let out = self.map.call::<_, Value>((value,))?;
            return Ok(Some(out));
        }

        Ok(None)
    }
}

#[derive(Debug)]
struct FlatMap<I> {
    map: Fuse<I>,
    frontiter: Option<IterRepr>,
    backiter: Option<IterRepr>,
}

impl<I> RuneIterator for FlatMap<I>
where
    I: RuneIterator,
{
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let (flo, fhi) = self
            .frontiter
            .as_ref()
            .map_or((0, Some(0)), IterRepr::size_hint);

        let (blo, bhi) = self
            .backiter
            .as_ref()
            .map_or((0, Some(0)), IterRepr::size_hint);

        let lo = flo.saturating_add(blo);

        match (self.map.size_hint(), fhi, bhi) {
            ((0, Some(0)), Some(a), Some(b)) => (lo, a.checked_add(b)),
            _ => (lo, None),
        }
    }

    fn is_double_ended(&self) -> bool {
        if !self.map.is_double_ended() {
            return false;
        }

        if !matches!(&self.frontiter, Some(iter) if !iter.is_double_ended()) {
            return false;
        }

        if !matches!(&self.backiter, Some(iter) if !iter.is_double_ended()) {
            return false;
        }

        true
    }

    fn next(&mut self) -> Result<Option<Value>, VmError> {
        loop {
            if let Some(iter) = &mut self.frontiter {
                match iter.next()? {
                    None => self.frontiter = None,
                    item @ Some(_) => return Ok(item),
                }
            }

            match self.map.next()? {
                None => {
                    return Ok(match &mut self.backiter {
                        Some(backiter) => backiter.next()?,
                        None => None,
                    })
                }
                Some(value) => {
                    let iterator = <Interface as FromValue>::from_value(value)?.into_iter()?;
                    self.frontiter = Some(iterator.iter)
                }
            }
        }
    }

    fn next_back(&mut self) -> Result<Option<Value>, VmError> {
        loop {
            if let Some(ref mut iter) = self.backiter {
                match iter.next_back()? {
                    None => self.backiter = None,
                    item @ Some(_) => return Ok(item),
                }
            }

            match self.map.next_back()? {
                None => {
                    return Ok(match &mut self.frontiter {
                        Some(frontiter) => frontiter.next_back()?,
                        None => None,
                    })
                }
                Some(value) => {
                    let iterator = <Interface as FromValue>::from_value(value)?.into_iter()?;
                    self.backiter = Some(iterator.iter);
                }
            }
        }
    }
}

#[derive(Debug)]
struct Filter<I> {
    iter: I,
    filter: Function,
}

impl<I> RuneIterator for Filter<I>
where
    I: RuneIterator,
{
    fn is_double_ended(&self) -> bool {
        self.iter.is_double_ended()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }

    fn next(&mut self) -> Result<Option<Value>, VmError> {
        while let Some(value) = self.iter.next()? {
            if self.filter.call::<_, bool>((value.clone(),))? {
                return Ok(Some(value));
            }
        }

        Ok(None)
    }

    fn next_back(&mut self) -> Result<Option<Value>, VmError> {
        while let Some(value) = self.iter.next_back()? {
            if self.filter.call::<_, bool>((value.clone(),))? {
                return Ok(Some(value));
            }
        }

        Ok(None)
    }
}

/// The trait for interacting with an iterator.
///
/// This has a blanket implementation, and is primarily used to restrict the
/// arguments that can be used in [Iterator::from_iterator].
pub trait IteratorTrait: 'static {
    /// Size hint of the iterator.
    fn size_hint(&self) -> (usize, Option<usize>);

    /// Get the next value out of the iterator.
    fn next(&mut self) -> Result<Option<Value>, VmError>;
}

impl<T> IteratorTrait for T
where
    T: 'static,
    T: iter::Iterator,
    T::Item: ToValue,
{
    fn size_hint(&self) -> (usize, Option<usize>) {
        iter::Iterator::size_hint(self)
    }

    fn next(&mut self) -> Result<Option<Value>, VmError> {
        let value = match iter::Iterator::next(self) {
            Some(value) => value,
            None => return Ok(None),
        };

        Ok(Some(value.to_value()?))
    }
}

/// The trait for interacting with an iterator.
///
/// This has a blanket implementation, and is primarily used to restrict the
/// arguments that can be used in [Iterator::from_double_ended].
pub trait DoubleEndedIteratorTrait: IteratorTrait {
    /// Get the next back value out of the iterator.
    fn next_back(&mut self) -> Result<Option<Value>, VmError>;
}

impl<T> DoubleEndedIteratorTrait for T
where
    T: 'static,
    T: iter::DoubleEndedIterator,
    T::Item: ToValue,
{
    fn next_back(&mut self) -> Result<Option<Value>, VmError> {
        let value = match iter::DoubleEndedIterator::next_back(self) {
            Some(value) => value,
            None => return Ok(None),
        };

        Ok(Some(value.to_value()?))
    }
}

struct IteratorObj<T>
where
    T: ?Sized,
{
    name: &'static str,
    iter: T,
}

#[derive(Debug)]
struct Chain<A, B> {
    a: Option<A>,
    b: Option<B>,
}

impl<A, B> RuneIterator for Chain<A, B>
where
    A: RuneIterator,
    B: RuneIterator,
{
    /// Determine if the chain is double ended.
    ///
    /// It is only double ended if all remaining iterators are double ended.

    fn is_double_ended(&self) -> bool {
        !matches!(&self.a, Some(i) if !i.is_double_ended())
            && !matches!(&self.b, Some(i) if !i.is_double_ended())
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        match self {
            Self {
                a: Some(a),
                b: Some(b),
            } => {
                let (a_lower, a_upper) = a.size_hint();
                let (b_lower, b_upper) = b.size_hint();

                let lower = a_lower.saturating_add(b_lower);

                let upper = match (a_upper, b_upper) {
                    (Some(x), Some(y)) => x.checked_add(y),
                    _ => None,
                };

                (lower, upper)
            }
            Self {
                a: Some(a),
                b: None,
            } => a.size_hint(),
            Self {
                a: None,
                b: Some(b),
            } => b.size_hint(),
            Self { a: None, b: None } => (0, Some(0)),
        }
    }

    #[inline]
    fn next(&mut self) -> Result<Option<Value>, VmError> {
        Ok(match fuse!(self.a.next()?) {
            None => maybe!(self.b.next()?),
            item => item,
        })
    }

    #[inline]
    fn next_back(&mut self) -> Result<Option<Value>, VmError> {
        Ok(match fuse!(self.b.next_back()?) {
            None => maybe!(self.a.next_back()?),
            item => item,
        })
    }
}

#[derive(Debug)]
struct Enumerate<I> {
    iter: I,
    count: usize,
}

impl<I> RuneIterator for Enumerate<I>
where
    I: RuneIterator,
{
    fn is_double_ended(&self) -> bool {
        self.iter.is_double_ended()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }

    #[inline]
    fn next(&mut self) -> Result<Option<Value>, VmError> {
        let value = match self.iter.next()? {
            Some(value) => value,
            None => return Ok(None),
        };

        let index = self.count;
        self.count = self.count.saturating_add(1);
        Ok(Some((index, value).to_value()?))
    }

    #[inline]
    fn next_back(&mut self) -> Result<Option<Value>, VmError> {
        let value = match self.iter.next_back()? {
            Some(value) => value,
            None => return Ok(None),
        };

        let len = self.iter.len()?;
        Ok(Some((self.count + len, value).to_value()?))
    }
}

#[derive(Debug)]
#[repr(transparent)]
struct Rev<I> {
    iter: I,
}

impl<I> RuneIterator for Rev<I>
where
    I: RuneIterator,
{
    #[inline]
    fn is_double_ended(&self) -> bool {
        true
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }

    #[inline]
    fn next(&mut self) -> Result<Option<Value>, VmError> {
        self.iter.next_back()
    }

    #[inline]
    fn next_back(&mut self) -> Result<Option<Value>, VmError> {
        self.iter.next()
    }
}

#[derive(Debug)]
struct Take<I> {
    iter: I,
    n: usize,
}

impl<I> RuneIterator for Take<I>
where
    I: RuneIterator,
{
    #[inline]
    fn is_double_ended(&self) -> bool {
        self.iter.is_double_ended()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.n == 0 {
            return (0, Some(0));
        }

        let (lower, upper) = self.iter.size_hint();

        let lower = std::cmp::min(lower, self.n);

        let upper = match upper {
            Some(x) if x < self.n => Some(x),
            _ => Some(self.n),
        };

        (lower, upper)
    }

    #[inline]
    fn next(&mut self) -> Result<Option<Value>, VmError> {
        if self.n == 0 {
            return Ok(None);
        }

        self.n -= 1;
        self.iter.next()
    }

    #[inline]
    fn next_back(&mut self) -> Result<Option<Value>, VmError> {
        if self.n == 0 {
            return Ok(None);
        }

        self.n -= 1;
        self.iter.next_back()
    }
}

#[derive(Debug)]
struct Peekable<I> {
    iter: I,
    peeked: Option<Option<Value>>,
}

impl<I> Peekable<I>
where
    I: RuneIterator,
{
    #[inline]
    fn peek(&mut self) -> Result<Option<Value>, VmError> {
        if let Some(value) = &self.peeked {
            return Ok(value.clone());
        }

        let value = self.iter.next()?;
        self.peeked = Some(value.clone());
        Ok(value)
    }
}

impl<I> Peekable<I>
where
    I: RuneIterator,
{
    #[inline]
    fn is_double_ended(&self) -> bool {
        self.iter.is_double_ended()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let peek_len = match self.peeked {
            Some(None) => return (0, Some(0)),
            Some(Some(_)) => 1,
            None => 0,
        };
        let (lo, hi) = self.iter.size_hint();
        let lo = lo.saturating_add(peek_len);
        let hi = match hi {
            Some(x) => x.checked_add(peek_len),
            None => None,
        };
        (lo, hi)
    }

    #[inline]
    fn next(&mut self) -> Result<Option<Value>, VmError> {
        match self.peeked.take() {
            Some(v) => Ok(v),
            None => self.iter.next(),
        }
    }

    #[inline]
    fn next_back(&mut self) -> Result<Option<Value>, VmError> {
        match self.peeked.as_mut() {
            Some(v @ Some(_)) => Ok(self.iter.next_back()?.or_else(|| v.take())),
            Some(None) => Ok(None),
            None => self.iter.next_back(),
        }
    }
}

#[derive(Debug)]
struct Fuse<I> {
    iter: Option<I>,
}

impl<I> Fuse<I> {
    fn new(iter: I) -> Self {
        Self { iter: Some(iter) }
    }
}

impl<I> RuneIterator for Fuse<I>
where
    I: RuneIterator,
{
    #[inline]
    fn is_double_ended(&self) -> bool {
        match &self.iter {
            Some(iter) => iter.is_double_ended(),
            // NB: trivially double-ended since it produces no values.
            None => true,
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        match &self.iter {
            Some(iter) => iter.size_hint(),
            None => (0, Some(0)),
        }
    }

    #[inline]
    fn next(&mut self) -> Result<Option<Value>, VmError> {
        if let Some(iter) = &mut self.iter {
            if let Some(value) = iter.next()? {
                return Ok(Some(value));
            }

            self.iter = None;
        }

        Ok(None)
    }

    #[inline]
    fn next_back(&mut self) -> Result<Option<Value>, VmError> {
        if let Some(iter) = &mut self.iter {
            if let Some(value) = iter.next_back()? {
                return Ok(Some(value));
            }

            self.iter = None;
        }

        Ok(None)
    }
}