1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
use crate::Uint;

impl<const BITS: usize, const LIMBS: usize> Uint<BITS, LIMBS> {
    #[must_use]
    pub fn checked_pow(self, exp: usize) -> Option<Self> {
        match self.overflowing_pow(exp) {
            (x, false) => Some(x),
            (_, true) => None,
        }
    }

    /// # Examples
    ///
    /// ```
    /// # use ruint::{Uint, uint};
    /// # uint!{
    /// assert_eq!(36_U64.overflowing_pow(12), (0x41c21cb8e1000000_U64, false));
    /// assert_eq!(36_U64.overflowing_pow(13), (0x3f4c09ffa4000000_U64, true));
    /// assert_eq!(36_U68.overflowing_pow(13), (0x093f4c09ffa4000000_U68, false));
    /// assert_eq!(16_U65.overflowing_pow(32), (0_U65, true));
    /// # }
    /// ```
    /// Small cases:
    /// ```
    /// # use ruint::{Uint, uint};
    /// # uint!{
    /// assert_eq!(0_U0.overflowing_pow(0), (0_U0, false));
    /// assert_eq!(0_U1.overflowing_pow(0), (1_U1, false));
    /// assert_eq!(0_U1.overflowing_pow(1), (0_U1, false));
    /// assert_eq!(1_U1.overflowing_pow(0), (1_U1, false));
    /// assert_eq!(1_U1.overflowing_pow(1), (1_U1, false));
    /// # }
    /// ```
    #[must_use]
    pub fn overflowing_pow(mut self, mut exp: usize) -> (Self, bool) {
        if BITS == 0 {
            return (self, false);
        }

        // Exponentiation by squaring
        let mut overflow = false;
        let mut base_overflow = false;
        let mut result = Self::from(1);
        while exp > 0 {
            // Multiply by base
            if exp & 1 == 1 {
                let (r, o) = result.overflowing_mul(self);
                result = r;
                overflow |= o | base_overflow;
            }

            // Square base
            let (s, o) = self.overflowing_mul(self);
            self = s;
            base_overflow |= o;
            exp >>= 1;
        }
        (result, overflow)
    }

    #[must_use]
    pub fn pow(self, exp: usize) -> Self {
        self.wrapping_pow(exp)
    }

    #[must_use]
    pub fn saturating_pow(self, exp: usize) -> Self {
        match self.overflowing_pow(exp) {
            (x, false) => x,
            (_, true) => Self::MAX,
        }
    }

    #[must_use]
    pub fn wrapping_pow(self, exp: usize) -> Self {
        self.overflowing_pow(exp).0
    }

    /// Construct from double precision binary logarithm.
    ///
    /// # Examples
    ///
    /// ```
    /// # use ruint::{Uint, uint, aliases::*};
    /// # uint!{
    /// assert_eq!(U64::approx_pow2(-2.0), Some(0_U64));
    /// assert_eq!(U64::approx_pow2(-1.0), Some(1_U64));
    /// assert_eq!(U64::approx_pow2(0.0), Some(1_U64));
    /// assert_eq!(U64::approx_pow2(1.0), Some(2_U64));
    /// assert_eq!(U64::approx_pow2(1.6), Some(3_U64));
    /// assert_eq!(U64::approx_pow2(2.0), Some(4_U64));
    /// assert_eq!(U64::approx_pow2(64.0), None);
    /// assert_eq!(U64::approx_pow2(10.385), Some(1337_U64));
    /// # }
    /// ```
    #[must_use]
    pub fn approx_pow2(exp: f64) -> Option<Self> {
        const LN2_1P5: f64 = 0.584_962_500_721_156_2_f64;
        const EXP2_63: f64 = 9_223_372_036_854_775_808_f64;

        // FEATURE: Round negative to zero.
        #[allow(clippy::cast_precision_loss)] // Self::BITS ~< 2^52 and so fits f64.
        if exp < LN2_1P5 {
            if exp < -1.0 {
                return Some(Self::ZERO);
            }
            return Self::try_from(1).ok();
        }
        #[allow(clippy::cast_precision_loss)]
        if exp > Self::BITS as f64 {
            return None;
        }

        // Since exp < BITS, it has an integer and fractional part.
        #[allow(clippy::cast_possible_truncation)] // exp <= BITS <= usize::MAX.
        #[allow(clippy::cast_sign_loss)] // exp >= 0.
        let shift = exp.trunc() as usize;
        let fract = exp.fract();

        // Compute the leading 64 bits
        // Since `fract < 1.0` we have `fract.exp2() < 2`, so we can rescale by
        // 2^63 and cast to u64.
        #[allow(clippy::cast_possible_truncation)] // fract < 1.0
        #[allow(clippy::cast_sign_loss)] // fract >= 0.
        let bits = (fract.exp2() * EXP2_63) as u64;
        // Note: If `fract` is zero this will result in `u64::MAX`.

        if shift >= 63 {
            // OPT: A dedicated function avoiding full-sized shift.
            Some(Self::try_from(bits).ok()?.checked_shl(shift - 63)?)
        } else {
            let shift = 63 - shift;
            // Divide `bits` by `2^shift`, rounding to nearest.
            let bits = (bits >> shift) + ((bits >> (shift - 1)) & 1);
            Self::try_from(bits).ok()
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{const_for, nlimbs};
    use proptest::proptest;
    use std::iter::repeat;

    #[test]
    fn test_pow2_shl() {
        const_for!(BITS in NON_ZERO if (BITS >= 2) {
            const LIMBS: usize = nlimbs(BITS);
            type U = Uint<BITS, LIMBS>;
            proptest!(|(e in 0..=BITS+1)| {
                assert_eq!(U::from(2).pow(e), U::from(1) << e);
            });
        });
    }

    #[test]
    fn test_pow_product() {
        const_for!(BITS in NON_ZERO if (BITS >= 64) {
            const LIMBS: usize = nlimbs(BITS);
            type U = Uint<BITS, LIMBS>;
            proptest!(|(b in 2_u64..100, e in 0_usize..100)| {
                let b = U::from(b);
                let prod = repeat(b).take(e).product();
                assert_eq!(b.pow(e), prod);
            });
        });
    }
}

#[cfg(feature = "bench")]
#[doc(hidden)]
pub mod bench {
    use super::*;
    use crate::{const_for, nlimbs};
    use ::proptest::{
        arbitrary::Arbitrary,
        strategy::{Strategy, ValueTree},
        test_runner::TestRunner,
    };
    use criterion::{black_box, BatchSize, Criterion};

    pub fn group(criterion: &mut Criterion) {
        const_for!(BITS in BENCH {
            const LIMBS: usize = nlimbs(BITS);
            bench_pow::<BITS, LIMBS>(criterion);
        });
    }

    fn bench_pow<const BITS: usize, const LIMBS: usize>(criterion: &mut Criterion) {
        let input = (Uint::<BITS, LIMBS>::arbitrary(), usize::arbitrary());
        let mut runner = TestRunner::deterministic();
        criterion.bench_function(&format!("pow/{}", BITS), move |bencher| {
            bencher.iter_batched(
                || input.new_tree(&mut runner).unwrap().current(),
                |(b, e)| black_box(black_box(b).pow(black_box(e))),
                BatchSize::SmallInput,
            );
        });
    }
}