1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
// OPT: Use u64::from_{be/le}_bytes() to work 8 bytes at a time.
// FEATURE: (BLOCKED) Make `const fn`s when `const_for` is stable.

use crate::{
    utils::{trim_end_slice, trim_end_vec},
    Uint,
};
use core::{
    mem::size_of_val,
    ptr::{addr_of, addr_of_mut},
    slice,
};
use std::borrow::Cow;

// OPT: *_to_smallvec to avoid allocation.

impl<const BITS: usize, const LIMBS: usize> Uint<BITS, LIMBS> {
    /// The size of this integer type in bytes. Note that some bits may be
    /// forced zero if BITS is not cleanly divisible by eight.
    pub const BYTES: usize = (BITS + 7) / 8;

    /// Access the underlying store as a little-endian slice of bytes.
    ///
    /// Only available on litte-endian targets.
    ///
    /// If `BITS` does not evenly divide 8, it is padded with zero bits in the
    /// most significant position.
    #[cfg(target_endian = "little")]
    #[must_use]
    pub fn as_le_slice(&self) -> &[u8] {
        debug_assert!(Self::BYTES <= size_of_val(&self.limbs));
        let data = addr_of!(self.limbs).cast();
        unsafe { slice::from_raw_parts(data, Self::BYTES) }
    }

    /// Access the underlying store as a mutable little-endian slice of bytes.
    ///
    /// Only available on litte-endian targets.
    ///
    /// # Safety
    ///
    /// If `BITS` does not evenly divide 8, it is padded with zero bits in the
    /// most significant position. Setting those bits puts the [`Uint`] in an
    /// invalid state.
    #[cfg(target_endian = "little")]
    #[must_use]
    pub unsafe fn as_le_slice_mut(&mut self) -> &mut [u8] {
        debug_assert!(Self::BYTES <= size_of_val(&self.limbs));
        let data = addr_of_mut!(self.limbs).cast();
        slice::from_raw_parts_mut(data, Self::BYTES)
    }

    /// Access the underlying store as a little-endian bytes.
    ///
    /// Uses an optimized implementation on little-endian targets.
    #[must_use]
    pub fn as_le_bytes(&self) -> Cow<'_, [u8]> {
        // On little endian platforms this is a no-op.
        #[cfg(target_endian = "little")]
        return Cow::Borrowed(self.as_le_slice());

        // In others it's a bit more complicated.
        #[cfg(not(target_endian = "little"))]
        return Cow::Owned(self.to_le_bytes_vec());
    }

    /// Access the underlying store as a little-endian bytes with trailing zeros
    /// removed.
    ///
    /// Uses an optimized implementation on little-endian targets.
    #[must_use]
    pub fn as_le_bytes_trimmed(&self) -> Cow<'_, [u8]> {
        match self.as_le_bytes() {
            Cow::Borrowed(slice) => Cow::Borrowed(trim_end_slice(slice, &0)),
            Cow::Owned(mut vec) => {
                trim_end_vec(&mut vec, &0);
                Cow::Owned(vec)
            }
        }
    }

    /// Converts the [`Uint`] to a little-endian byte array of size exactly
    /// [`Self::BYTES`].
    ///
    /// # Panics
    ///
    /// Panics if the generic parameter `BYTES` is not exactly [`Self::BYTES`].
    /// Ideally this would be a compile time error, but this is blocked by
    /// Rust issue [#60551].
    ///
    /// [#60551]: https://github.com/rust-lang/rust/issues/60551
    #[must_use]
    pub fn to_le_bytes<const BYTES: usize>(&self) -> [u8; BYTES] {
        assert_eq!(BYTES, Self::BYTES);
        let mut bytes = [0; BYTES];

        #[cfg(target_endian = "little")]
        bytes.copy_from_slice(self.as_le_slice());

        #[cfg(not(target_endian = "little"))]
        for (chunk, limb) in bytes.chunks_mut(8).zip(self.as_limbs().iter()) {
            chunk.copy_from_slice(&limb.to_le_bytes()[..chunk.len()]);
        }

        bytes
    }

    /// Converts the [`Uint`] to a little-endian byte vector of size exactly
    /// [`Self::BYTES`].
    ///
    /// This method is useful when [`Self::to_le_bytes`] can not be used because
    /// byte size is not known compile time.
    #[must_use]
    pub fn to_le_bytes_vec(&self) -> Vec<u8> {
        self.as_le_bytes().into_owned()
    }

    /// Converts the [`Uint`] to a little-endian byte vector with trailing zeros
    /// bytes removed.
    #[must_use]
    pub fn to_le_bytes_trimmed_vec(&self) -> Vec<u8> {
        self.as_le_bytes_trimmed().into_owned()
    }

    /// Converts the [`Uint`] to a big-endian byte array of size exactly
    /// [`Self::BYTES`].
    ///
    /// # Panics
    ///
    /// Panics if the generic parameter `BYTES` is not exactly [`Self::BYTES`].
    /// Ideally this would be a compile time error, but this is blocked by
    /// Rust issue [#60551].
    ///
    /// [#60551]: https://github.com/rust-lang/rust/issues/60551
    #[must_use]
    pub fn to_be_bytes<const BYTES: usize>(&self) -> [u8; BYTES] {
        let mut bytes = self.to_le_bytes();
        bytes.reverse();
        bytes
    }

    /// Converts the [`Uint`] to a big-endian byte vector of size exactly
    /// [`Self::BYTES`].
    ///
    /// This method is useful when [`Self::to_be_bytes`] can not be used because
    /// byte size is not known compile time.
    #[must_use]
    pub fn to_be_bytes_vec(&self) -> Vec<u8> {
        let mut bytes = self.to_le_bytes_vec();
        bytes.reverse();
        bytes
    }

    /// Converts the [`Uint`] to a big-endian byte vector with leading zeros
    /// bytes removed.
    #[must_use]
    pub fn to_be_bytes_trimmed_vec(&self) -> Vec<u8> {
        let mut bytes = self.to_le_bytes_trimmed_vec();
        bytes.reverse();
        bytes
    }

    /// Creates a new integer from a little endian stream of bytes.
    #[must_use]
    #[allow(clippy::cast_lossless)]
    fn try_from_le_byte_iter<I>(iter: I) -> Option<Self>
    where
        I: Iterator<Item = u8>,
    {
        let mut limbs = [0; LIMBS];
        for (i, byte) in iter.enumerate() {
            if byte == 0 {
                continue;
            }
            let limb_index = i / 8;
            if limb_index >= Self::LIMBS {
                return None;
            }
            let byte_index = i % 8;
            limbs[limb_index] += (byte as u64) << (byte_index * 8);
        }
        if Self::LIMBS > 0 && limbs[Self::LIMBS - 1] > Self::MASK {
            return None;
        }
        Some(Self::from_limbs(limbs))
    }

    /// Creates a new integer from a big endian slice of bytes.
    ///
    /// The slice is interpreted as a big endian number. Leading zeros
    /// are ignored. The slice can be any length.
    ///
    /// Returns [`None`] if the value is larger than fits the [`Uint`].
    #[must_use]
    pub fn try_from_be_slice(bytes: &[u8]) -> Option<Self> {
        Self::try_from_le_byte_iter(bytes.iter().copied().rev())
    }

    /// Creates a new integer from a little endian slice of bytes.
    ///
    /// The slice is interpreted as a little endian number. Leading zeros
    /// are ignored. The slice can be any length.
    ///
    /// Returns [`None`] if the value is larger than fits the [`Uint`].
    #[must_use]
    pub fn try_from_le_slice(bytes: &[u8]) -> Option<Self> {
        Self::try_from_le_byte_iter(bytes.iter().copied())
    }

    /// Converts a big-endian byte array of size exactly
    /// [`Self::BYTES`] to [`Uint`].
    ///
    /// # Panics
    ///
    /// Panics if the generic parameter `BYTES` is not exactly [`Self::BYTES`].
    /// Ideally this would be a compile time error, but this is blocked by
    /// Rust issue [#60551].
    ///
    /// [#60551]: https://github.com/rust-lang/rust/issues/60551
    ///
    /// Panics if the value is too large for the bit-size of the Uint.
    #[must_use]
    #[track_caller]
    pub fn from_be_bytes<const BYTES: usize>(bytes: [u8; BYTES]) -> Self {
        assert_eq!(BYTES, Self::BYTES);
        match Self::try_from_be_slice(&bytes) {
            Some(uint) => uint,
            None => panic!("Value too large for Uint<{}>", BITS),
        }
    }

    /// Converts a little-endian byte array of size exactly
    /// [`Self::BYTES`] to [`Uint`].
    ///
    /// # Panics
    ///
    /// Panics if the generic parameter `BYTES` is not exactly [`Self::BYTES`].
    /// Ideally this would be a compile time error, but this is blocked by
    /// Rust issue [#60551].
    ///
    /// [#60551]: https://github.com/rust-lang/rust/issues/60551
    ///
    /// Panics if the value is too large for the bit-size of the Uint.
    #[must_use]
    #[track_caller]
    pub fn from_le_bytes<const BYTES: usize>(bytes: [u8; BYTES]) -> Self {
        assert_eq!(BYTES, Self::BYTES);
        match Self::try_from_le_slice(&bytes) {
            Some(uint) => uint,
            None => panic!("Value too large for Uint<{}>", BITS),
        }
    }
}

/// Number of bytes required to represent the given number of bits.
///
/// This needs to be public because it is used in the `Uint` type,
/// specifically in the [`to_be_bytes()`][Uint::to_be_bytes] and related
/// functions.
#[must_use]
pub const fn nbytes(bits: usize) -> usize {
    (bits + 7) / 8
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{const_for, nlimbs};
    use proptest::proptest;

    const N: Uint<128, 2> =
        Uint::from_limbs([0x7890_1234_5678_9012_u64, 0x1234_5678_9012_3456_u64]);
    const BE: [u8; 16] = [
        0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56, 0x78, 0x90,
        0x12,
    ];
    const LE: [u8; 16] = [
        0x12, 0x90, 0x78, 0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34,
        0x12,
    ];

    const K: Uint<72, 2> = Uint::from_limbs([0x3456_7890_1234_5678_u64, 0x12_u64]);
    const KBE: [u8; 9] = [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56, 0x78];
    const KLE: [u8; 9] = [0x78, 0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12];

    #[test]
    fn test_from_bytes() {
        assert_eq!(Uint::<0, 0>::from_be_bytes([]), Uint::ZERO);
        assert_eq!(Uint::<0, 0>::from_le_bytes([]), Uint::ZERO);
        assert_eq!(
            Uint::<12, 1>::from_be_bytes([0x01, 0x23]),
            Uint::from(0x0123)
        );
        assert_eq!(
            Uint::<12, 1>::from_le_bytes([0x23, 0x01]),
            Uint::from(0x0123)
        );
        assert_eq!(
            Uint::<16, 1>::from_be_bytes([0x12, 0x34]),
            Uint::from(0x1234)
        );
        assert_eq!(
            Uint::<16, 1>::from_le_bytes([0x34, 0x12]),
            Uint::from(0x1234)
        );
        assert_eq!(Uint::from_be_bytes(BE), N);
        assert_eq!(Uint::from_le_bytes(LE), N);
        assert_eq!(Uint::from_be_bytes(KBE), K);
        assert_eq!(Uint::from_le_bytes(KLE), K);
    }

    #[test]
    fn test_to_bytes() {
        assert_eq!(Uint::<0, 0>::ZERO.to_le_bytes(), [0_u8; 0]);
        assert_eq!(Uint::<0, 0>::ZERO.to_be_bytes(), [0_u8; 0]);
        assert_eq!(Uint::<12, 1>::from(0x0123_u64).to_le_bytes(), [0x23, 0x01]);
        assert_eq!(Uint::<12, 1>::from(0x0123_u64).to_be_bytes(), [0x01, 0x23]);
        assert_eq!(Uint::<16, 1>::from(0x1234_u64).to_le_bytes(), [0x34, 0x12]);
        assert_eq!(Uint::<16, 1>::from(0x1234_u64).to_be_bytes(), [0x12, 0x34]);
        assert_eq!(K.to_be_bytes(), KBE);
        assert_eq!(K.to_le_bytes(), KLE);
    }

    #[test]
    fn test_bytes_roundtrip() {
        const_for!(BITS in SIZES {
            const LIMBS: usize = nlimbs(BITS);
            const BYTES: usize = nbytes(BITS);
            proptest!(|(value: Uint<BITS, LIMBS>)| {
                assert_eq!(value, Uint::try_from_le_slice(&value.as_le_bytes()).unwrap());
                assert_eq!(value, Uint::try_from_le_slice(&value.as_le_bytes_trimmed()).unwrap());
                assert_eq!(value, Uint::try_from_be_slice(&value.to_be_bytes_trimmed_vec()).unwrap());
                assert_eq!(value, Uint::try_from_le_slice(&value.to_le_bytes_trimmed_vec()).unwrap());
                assert_eq!(value, Uint::from_be_bytes(value.to_be_bytes::<BYTES>()));
                assert_eq!(value, Uint::from_le_bytes(value.to_le_bytes::<BYTES>()));
            });
        });
    }
}