Struct rug::Integer [−][src]
#[repr(transparent)]pub struct Integer { /* fields omitted */ }
An arbitrary-precision integer.
Standard arithmetic operations, bitwise operations and comparisons are
supported. In standard arithmetic operations such as addition, you can
mix Integer and primitive integer types; the result will be an
Integer.
Internally the integer is not stored using a two’s-complement representation, however, for bitwise operations and shifts, the functionality is the same as if the representation was using two’s complement.
Examples
use rug::{Assign, Integer}; // Create an integer initialized as zero. let mut int = Integer::new(); assert_eq!(int, 0); assert_eq!(int.to_u32(), Some(0)); int.assign(-14); assert_eq!(int, -14); assert_eq!(int.to_u32(), None); assert_eq!(int.to_i32(), Some(-14));
Arithmetic operations with mixed arbitrary and primitive types are
allowed. Note that in the following example, there is only one
allocation. The Integer instance is moved into the shift operation
so that the result can be stored in the same instance, then that
result is similarly consumed by the addition operation.
use rug::Integer; let mut a = Integer::from(0xc); a = (a << 80) + 0xffee; assert_eq!(a.to_string_radix(16), "c0000000000000000ffee"); // ^ ^ ^ ^ ^ // 80 64 48 32 16
Bitwise operations on Integer values behave as if the value uses a
two’s-complement representation.
use rug::Integer; let mut i = Integer::from(1); i = i << 1000; // i is now 1000000... (1000 zeros) assert_eq!(i.significant_bits(), 1001); assert_eq!(i.find_one(0), Some(1000)); i -= 1; // i is now 111111... (1000 ones) assert_eq!(i.count_ones(), Some(1000)); let a = Integer::from(0xf00d); // -1 is all ones in two’s complement let all_ones_xor_a = Integer::from(-1 ^ &a); // a is unchanged as we borrowed it let complement_a = !a; // now a has been moved, so this would cause an error: // assert!(a > 0); assert_eq!(all_ones_xor_a, complement_a); assert_eq!(complement_a, -0xf00e); assert_eq!(format!("{:x}", complement_a), "-f00e");
To initialize a large Integer that does not fit in a primitive type,
you can parse a string.
use rug::Integer; let s1 = "123456789012345678901234567890"; let i1 = s1.parse::<Integer>().unwrap(); assert_eq!(i1.significant_bits(), 97); let s2 = "ffff0000ffff0000ffff0000ffff0000ffff0000"; let i2 = Integer::from_str_radix(s2, 16).unwrap(); assert_eq!(i2.significant_bits(), 160); assert_eq!(i2.count_ones(), Some(80));
Operations on two borrowed Integer values result in an
incomplete-computation value that has to be assigned to a new
Integer value.
use rug::Integer; let a = Integer::from(10); let b = Integer::from(3); let a_b_ref = &a + &b; let a_b = Integer::from(a_b_ref); assert_eq!(a_b, 13);
As a special case, when an incomplete-computation value is
obtained from multiplying two Integer references, it can be added to
or subtracted from another Integer (or reference). This can be
useful for multiply-accumulate operations.
use rug::Integer; let mut acc = Integer::from(100); let m1 = Integer::from(3); let m2 = Integer::from(7); // 100 + 3 * 7 = 121 acc += &m1 * &m2; assert_eq!(acc, 121); let other = Integer::from(2000); // Do not consume any values here: // 2000 - 3 * 7 = 1979 let sub = Integer::from(&other - &m1 * &m2); assert_eq!(sub, 1979);
The Integer type supports various functions. Most methods have three
versions:
- The first method consumes the operand.
- The second method has a “
_mut” suffix and mutates the operand. - The third method has a “
_ref” suffix and borrows the operand. The returned item is an incomplete-computation value that can be assigned to anInteger.
use rug::Integer; // 1. consume the operand let a = Integer::from(-15); let abs_a = a.abs(); assert_eq!(abs_a, 15); // 2. mutate the operand let mut b = Integer::from(-16); b.abs_mut(); assert_eq!(b, 16); // 3. borrow the operand let c = Integer::from(-17); let r = c.abs_ref(); let abs_c = Integer::from(r); assert_eq!(abs_c, 17); // c was not consumed assert_eq!(c, -17);
Methods
impl Integer[src]
impl Integerpub fn new() -> Self[src]
pub fn new() -> SelfConstructs a new arbitrary-precision Integer with value 0.
Examples
use rug::Integer; let i = Integer::new(); assert_eq!(i, 0);
pub fn with_capacity(bits: usize) -> Self[src]
pub fn with_capacity(bits: usize) -> SelfConstructs a new arbitrary-precision Integer with at least
the specified capacity.
Examples
use rug::Integer; let i = Integer::with_capacity(137); assert!(i.capacity() >= 137);
pub fn capacity(&self) -> usize[src]
pub fn capacity(&self) -> usizeReturns the capacity in bits that can be stored without reallocating.
Examples
use rug::Integer; let i = Integer::with_capacity(137); assert!(i.capacity() >= 137);
pub fn reserve(&mut self, additional: usize)[src]
pub fn reserve(&mut self, additional: usize)Reserves capacity for at least additional more bits in the
Integer.
If the integer already has enough excess capacity, this function does nothing.
Examples
use rug::Integer; // 0x2000_0000 needs 30 bits. let mut i = Integer::from(0x2000_0000); assert_eq!(i.significant_bits(), 30); i.reserve(290); let capacity = i.capacity(); assert!(capacity >= 320); i.reserve(0); assert_eq!(i.capacity(), capacity); i.reserve(291); assert!(i.capacity() >= 321);
pub fn shrink_to_fit(&mut self)[src]
pub fn shrink_to_fit(&mut self)Shrinks the capacity of the Integer as much as possible.
The capacity can still be larger than the number of significant bits.
Examples
use rug::Integer; // let i be 100 bits wide let mut i = Integer::from_str_radix("fffff12345678901234567890", 16) .unwrap(); assert_eq!(i.significant_bits(), 100); assert!(i.capacity() >= 100); i >>= 80; i.shrink_to_fit(); assert!(i.capacity() >= 20);
pub unsafe fn from_raw(raw: mpz_t) -> Self[src]
pub unsafe fn from_raw(raw: mpz_t) -> SelfCreates an Integer from an initialized
GMP integer.
Safety
- The value must be initialized.
- The
gmp_mpfr_sys::gmp::mpz_ttype can be considered as a kind of pointer, so there can be multiple copies of it. Since this function takes over ownership, no other copies of the passed value should exist.
Examples
extern crate gmp_mpfr_sys; extern crate rug; use gmp_mpfr_sys::gmp; use rug::Integer; use std::mem; fn main() { let i = unsafe { let mut z = mem::uninitialized(); gmp::mpz_init_set_ui(&mut z, 15); // z is initialized and unique Integer::from_raw(z) }; assert_eq!(i, 15); // since i is an Integer now, deallocation is automatic }
pub fn into_raw(self) -> mpz_t[src]
pub fn into_raw(self) -> mpz_tConverts an Integer into a GMP integer.
The returned object should be freed to avoid memory leaks.
Examples
extern crate gmp_mpfr_sys; extern crate rug; use gmp_mpfr_sys::gmp; use rug::Integer; fn main() { let i = Integer::from(15); let mut z = i.into_raw(); unsafe { let u = gmp::mpz_get_ui(&z); assert_eq!(u, 15); // free object to prevent memory leak gmp::mpz_clear(&mut z); } }
pub fn as_raw(&self) -> *const mpz_t[src]
pub fn as_raw(&self) -> *const mpz_tReturns a pointer to the inner GMP integer.
The returned pointer will be valid for as long as self is
valid.
Examples
extern crate gmp_mpfr_sys; extern crate rug; use gmp_mpfr_sys::gmp; use rug::Integer; fn main() { let i = Integer::from(15); let z_ptr = i.as_raw(); unsafe { let u = gmp::mpz_get_ui(z_ptr); assert_eq!(u, 15); } // i is still valid assert_eq!(i, 15); }
pub fn as_raw_mut(&mut self) -> *mut mpz_t[src]
pub fn as_raw_mut(&mut self) -> *mut mpz_tReturns an unsafe mutable pointer to the inner GMP integer.
The returned pointer will be valid for as long as self is
valid.
Examples
extern crate gmp_mpfr_sys; extern crate rug; use gmp_mpfr_sys::gmp; use rug::Integer; fn main() { let mut i = Integer::from(15); let z_ptr = i.as_raw_mut(); unsafe { gmp::mpz_add_ui(z_ptr, z_ptr, 20); } assert_eq!(i, 35); }
pub fn from_digits<T>(digits: &[T], order: Order) -> Self where
T: UnsignedPrimitive, [src]
pub fn from_digits<T>(digits: &[T], order: Order) -> Self where
T: UnsignedPrimitive, Creates an Integer from a slice of digits of type T,
where T can be any of the unsigned integer primitive types.
The resulting value cannot be negative.
Examples
use rug::integer::Order; use rug::Integer; let digits = [0x5678u16, 0x1234u16]; let i = Integer::from_digits(&digits, Order::Lsf); assert_eq!(i, 0x1234_5678);
pub fn assign_digits<T>(&mut self, digits: &[T], order: Order) where
T: UnsignedPrimitive, [src]
pub fn assign_digits<T>(&mut self, digits: &[T], order: Order) where
T: UnsignedPrimitive, Assigns from a slice of digits of type T, where T can be
any of the unsigned integer primitive types.
The resulting value cannot be negative.
Examples
use rug::integer::Order; use rug::Integer; let digits = [0x5678u16, 0x1234u16]; let mut i = Integer::new(); i.assign_digits(&digits, Order::Lsf); assert_eq!(i, 0x1234_5678);
pub fn significant_digits<T>(&self) -> usize where
T: UnsignedPrimitive, [src]
pub fn significant_digits<T>(&self) -> usize where
T: UnsignedPrimitive, Returns the number of digits of type T required to represent
the absolute value.
T can be any of the unsigned integer primitive types.
Examples
use rug::Integer; let i: Integer = Integer::from(1) << 256; assert_eq!(i.significant_digits::<u8>(), 33); assert_eq!(i.significant_digits::<u16>(), 17); assert_eq!(i.significant_digits::<u32>(), 9); assert_eq!(i.significant_digits::<u64>(), 5);
pub fn to_digits<T>(&self, order: Order) -> Vec<T> where
T: UnsignedPrimitive, [src]
pub fn to_digits<T>(&self, order: Order) -> Vec<T> where
T: UnsignedPrimitive, Converts the absolute value to a Vec of digits of type
T, where T can be any of the unsigned integer primitive
types.
Examples
use rug::integer::Order; use rug::Integer; let i = Integer::from(0x1234_5678_9abc_def0u64); let digits = i.to_digits::<u32>(Order::MsfBe); assert_eq!(digits, [0x1234_5678u32.to_be(), 0x9abc_def0u32.to_be()]); let zero = Integer::new(); let digits_zero = zero.to_digits::<u32>(Order::MsfBe); assert!(digits_zero.is_empty());
pub fn write_digits<T>(&self, digits: &mut [T], order: Order) where
T: UnsignedPrimitive, [src]
pub fn write_digits<T>(&self, digits: &mut [T], order: Order) where
T: UnsignedPrimitive, Writes the absolute value into a slice of digits of type
T, where T can be any of the unsigned integer primitive
types.
The slice must be large enough to hold the digits; the minimum
size can be obtained using the significant_digits method.
The contents of the slice can be uninitialized before this method is called; this method sets all the elements of the slice, padding with zeros if the slice is larger than required.
Panics
Panics if the slice does not have sufficient capacity.
Examples
use rug::integer::Order; use rug::Integer; let i = Integer::from(0x1234_5678_9abc_def0u64); let mut digits = [0xffff_ffffu32; 4]; i.write_digits(&mut digits, Order::MsfBe); let word0 = 0x9abc_def0u32; let word1 = 0x1234_5678u32; assert_eq!(digits, [0, 0, word1.to_be(), word0.to_be()]);
The following example shows how to write into uninitialized
memory. In practice, the following code could be replaced by a
call to to_digits.
use rug::integer::Order; use rug::Integer; use std::slice; let i = Integer::from(0x1234_5678_9abc_def0u64); let len = i.significant_digits::<u32>(); assert_eq!(len, 2); // The following code is equivalent to: // let digits = i.to_digits::<u32>(Order::MsfBe); let mut digits = Vec::<u32>::with_capacity(len); // The dst slice points to allocated but uninitialized memory. // All the digits will be initialized by write_digits. unsafe { let ptr = digits.as_mut_ptr(); let dst = slice::from_raw_parts_mut(ptr, len); i.write_digits(dst, Order::MsfBe); digits.set_len(len); } assert_eq!(digits, [0x1234_5678u32.to_be(), 0x9abc_def0u32.to_be()]);
pub fn from_f32(val: f32) -> Option<Self>[src]
pub fn from_f32(val: f32) -> Option<Self>Creates an Integer from an f32 if it is
finite, rounding towards zero.
Examples
use rug::Integer; use std::f32; let i = Integer::from_f32(-5.6).unwrap(); assert_eq!(i, -5); let neg_inf = Integer::from_f32(f32::NEG_INFINITY); assert!(neg_inf.is_none());
pub fn from_f64(val: f64) -> Option<Self>[src]
pub fn from_f64(val: f64) -> Option<Self>Creates an Integer from an f64 if it is
finite, rounding towards zero.
Examples
use rug::Integer; use std::f64; let i = Integer::from_f64(1e20).unwrap(); assert_eq!(i, "100000000000000000000".parse::<Integer>().unwrap()); let inf = Integer::from_f64(f64::INFINITY); assert!(inf.is_none());
pub fn from_str_radix(src: &str, radix: i32) -> Result<Self, ParseIntegerError>[src]
pub fn from_str_radix(src: &str, radix: i32) -> Result<Self, ParseIntegerError>Parses an Integer using the given radix.
Panics
Panics if radix is less than 2 or greater than 36.
Examples
use rug::Integer; let i = Integer::from_str_radix("-ff", 16).unwrap(); assert_eq!(i, -0xff);
pub fn parse<S>(src: S) -> Result<ParseIncomplete, ParseIntegerError> where
S: AsRef<[u8]>, [src]
pub fn parse<S>(src: S) -> Result<ParseIncomplete, ParseIntegerError> where
S: AsRef<[u8]>, Parses a decimal string slice (&str) or byte slice
(&[u8]) into an Integer.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
unwrapped returned incomplete-computation value as
Src.
The string can start with an optional minus or plus sign. ASCII whitespace is ignored everywhere in the string. Underscores anywhere except before the first digit are ignored as well.
Examples
use rug::Integer; let valid1 = Integer::parse("1223"); let i1 = Integer::from(valid1.unwrap()); assert_eq!(i1, 1223); let valid2 = Integer::parse("123 456 789"); let i2 = Integer::from(valid2.unwrap()); assert_eq!(i2, 123_456_789); let invalid = Integer::parse("789a"); assert!(invalid.is_err());
pub fn parse_radix<S>(
src: S,
radix: i32
) -> Result<ParseIncomplete, ParseIntegerError> where
S: AsRef<[u8]>, [src]
pub fn parse_radix<S>(
src: S,
radix: i32
) -> Result<ParseIncomplete, ParseIntegerError> where
S: AsRef<[u8]>, Parses a string slice (&str) or byte slice
(&[u8]) into an Integer.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
unwrapped returned incomplete-computation value as
Src.
The string can start with an optional minus or plus sign. ASCII whitespace is ignored everywhere in the string. Underscores anywhere except before the first digit are ignored as well.
Panics
Panics if radix is less than 2 or greater than 36.
Examples
use rug::Integer; let valid1 = Integer::parse_radix("1223", 4); let i1 = Integer::from(valid1.unwrap()); assert_eq!(i1, 3 + 4 * (2 + 4 * (2 + 4 * 1))); let valid2 = Integer::parse_radix("1234 abcd", 16); let i2 = Integer::from(valid2.unwrap()); assert_eq!(i2, 0x1234_abcd); let invalid = Integer::parse_radix("123", 3); assert!(invalid.is_err());
pub fn to_i8(&self) -> Option<i8>[src]
pub fn to_i8(&self) -> Option<i8>Converts to an i8 if the value fits.
If the compiler supports TryFrom, this conversion can also
be performed using i8::try_from(&integer) or
i8::try_from(integer).
Examples
use rug::Integer; let fits = Integer::from(-100); assert_eq!(fits.to_i8(), Some(-100)); let small = Integer::from(-200); assert_eq!(small.to_i8(), None); let large = Integer::from(200); assert_eq!(large.to_i8(), None);
pub fn to_i16(&self) -> Option<i16>[src]
pub fn to_i16(&self) -> Option<i16>Converts to an i16 if the value fits.
If the compiler supports TryFrom, this conversion can also
be performed using i16::try_from(&integer) or
i16::try_from(integer).
Examples
use rug::Integer; let fits = Integer::from(-30_000); assert_eq!(fits.to_i16(), Some(-30_000)); let small = Integer::from(-40_000); assert_eq!(small.to_i16(), None); let large = Integer::from(40_000); assert_eq!(large.to_i16(), None);
pub fn to_i32(&self) -> Option<i32>[src]
pub fn to_i32(&self) -> Option<i32>Converts to an i32 if the value fits.
If the compiler supports TryFrom, this conversion can also
be performed using i32::try_from(&integer) or
i32::try_from(integer).
Examples
use rug::Integer; let fits = Integer::from(-50); assert_eq!(fits.to_i32(), Some(-50)); let small = Integer::from(-123456789012345_i64); assert_eq!(small.to_i32(), None); let large = Integer::from(123456789012345_i64); assert_eq!(large.to_i32(), None);
pub fn to_i64(&self) -> Option<i64>[src]
pub fn to_i64(&self) -> Option<i64>Converts to an i64 if the value fits.
If the compiler supports TryFrom, this conversion can also
be performed using i64::try_from(&integer) or
i64::try_from(integer).
Examples
use rug::Integer; let fits = Integer::from(-50); assert_eq!(fits.to_i64(), Some(-50)); let small = Integer::from_str_radix("-fedcba9876543210", 16).unwrap(); assert_eq!(small.to_i64(), None); let large = Integer::from_str_radix("fedcba9876543210", 16).unwrap(); assert_eq!(large.to_i64(), None);
pub fn to_i128(&self) -> Option<i128>[src]
pub fn to_i128(&self) -> Option<i128>Converts to an i128 if the value fits.
This method is only present if the compiler supports the
i128 primitive.
If the compiler supports TryFrom, this conversion can also
be performed using i128::try_from(&integer) or
i128::try_from(integer).
Examples
use rug::Integer; let fits = Integer::from(-50); assert_eq!(fits.to_i128(), Some(-50)); let small: Integer = Integer::from(-1) << 130; assert_eq!(small.to_i128(), None); let large: Integer = Integer::from(1) << 130; assert_eq!(large.to_i128(), None);
pub fn to_isize(&self) -> Option<isize>[src]
pub fn to_isize(&self) -> Option<isize>Converts to an isize if the value fits.
If the compiler supports TryFrom, this conversion can also
be performed using isize::try_from(&integer) or
isize::try_from(integer).
Examples
use rug::Integer; let fits = Integer::from(0x1000); assert_eq!(fits.to_isize(), Some(0x1000)); let large: Integer = Integer::from(0x1000) << 128; assert_eq!(large.to_isize(), None);
pub fn to_u8(&self) -> Option<u8>[src]
pub fn to_u8(&self) -> Option<u8>Converts to a u8 if the value fits.
If the compiler supports TryFrom, this conversion can also
be performed using u8::try_from(&integer) or
u8::try_from(integer).
Examples
use rug::Integer; let fits = Integer::from(200); assert_eq!(fits.to_u8(), Some(200)); let neg = Integer::from(-1); assert_eq!(neg.to_u8(), None); let large = Integer::from(300); assert_eq!(large.to_u8(), None);
pub fn to_u16(&self) -> Option<u16>[src]
pub fn to_u16(&self) -> Option<u16>Converts to a u16 if the value fits.
If the compiler supports TryFrom, this conversion can also
be performed using u16::try_from(&integer) or
u16::try_from(integer).
Examples
use rug::Integer; let fits = Integer::from(60_000); assert_eq!(fits.to_u16(), Some(60_000)); let neg = Integer::from(-1); assert_eq!(neg.to_u16(), None); let large = Integer::from(70_000); assert_eq!(large.to_u16(), None);
pub fn to_u32(&self) -> Option<u32>[src]
pub fn to_u32(&self) -> Option<u32>Converts to a u32 if the value fits.
If the compiler supports TryFrom, this conversion can also
be performed using u32::try_from(&integer) or
u32::try_from(integer).
Examples
use rug::Integer; let fits = Integer::from(1234567890); assert_eq!(fits.to_u32(), Some(1234567890)); let neg = Integer::from(-1); assert_eq!(neg.to_u32(), None); let large = Integer::from(123456789012345_u64); assert_eq!(large.to_u32(), None);
pub fn to_u64(&self) -> Option<u64>[src]
pub fn to_u64(&self) -> Option<u64>Converts to a u64 if the value fits.
If the compiler supports TryFrom, this conversion can also
be performed using u64::try_from(&integer) or
u64::try_from(integer).
Examples
use rug::Integer; let fits = Integer::from(123456789012345_u64); assert_eq!(fits.to_u64(), Some(123456789012345)); let neg = Integer::from(-1); assert_eq!(neg.to_u64(), None); let large = "1234567890123456789012345".parse::<Integer>().unwrap(); assert_eq!(large.to_u64(), None);
pub fn to_u128(&self) -> Option<u128>[src]
pub fn to_u128(&self) -> Option<u128>Converts to a u128 if the value fits.
This method is only present if the compiler supports the
u128 primitive.
If the compiler supports TryFrom, this conversion can also
be performed using u128::try_from(&integer) or
u128::try_from(integer).
Examples
use rug::Integer; let fits = Integer::from(12345678901234567890_u128); assert_eq!(fits.to_u128(), Some(12345678901234567890)); let neg = Integer::from(-1); assert_eq!(neg.to_u128(), None); let large = "1234567890123456789012345678901234567890" .parse::<Integer>() .unwrap(); assert_eq!(large.to_u128(), None);
pub fn to_usize(&self) -> Option<usize>[src]
pub fn to_usize(&self) -> Option<usize>Converts to a usize if the value fits.
If the compiler supports TryFrom, this conversion can also
be performed using usize::try_from(&integer) or
usize::try_from(integer).
Examples
use rug::Integer; let fits = Integer::from(0x1000); assert_eq!(fits.to_usize(), Some(0x1000)); let neg = Integer::from(-1); assert_eq!(neg.to_usize(), None); let large: Integer = Integer::from(0x1000) << 128; assert_eq!(large.to_usize(), None);
pub fn to_i8_wrapping(&self) -> i8[src]
pub fn to_i8_wrapping(&self) -> i8Converts to an i8, wrapping if the value does not fit.
Examples
use rug::Integer; let large = Integer::from(0x1234); assert_eq!(large.to_i8_wrapping(), 0x34);
pub fn to_i16_wrapping(&self) -> i16[src]
pub fn to_i16_wrapping(&self) -> i16Converts to an i16, wrapping if the value does not fit.
Examples
use rug::Integer; let large = Integer::from(0x1234_5678); assert_eq!(large.to_i16_wrapping(), 0x5678);
pub fn to_i32_wrapping(&self) -> i32[src]
pub fn to_i32_wrapping(&self) -> i32Converts to an i32, wrapping if the value does not fit.
Examples
use rug::Integer; let large = Integer::from(0x1234_5678_9abc_def0_u64); assert_eq!(large.to_i32_wrapping(), 0x9abc_def0_u32 as i32);
pub fn to_i64_wrapping(&self) -> i64[src]
pub fn to_i64_wrapping(&self) -> i64Converts to an i64, wrapping if the value does not fit.
Examples
use rug::Integer; let large = Integer::from_str_radix("f123456789abcdef0", 16).unwrap(); assert_eq!(large.to_i64_wrapping(), 0x1234_5678_9abc_def0);
pub fn to_i128_wrapping(&self) -> i128[src]
pub fn to_i128_wrapping(&self) -> i128Converts to an i128, wrapping if the value does not fit.
This method is only present if the compiler supports the
i128 primitive.
Examples
use rug::Integer; let s = "f123456789abcdef0123456789abcdef0"; let large = Integer::from_str_radix(s, 16).unwrap(); assert_eq!( large.to_i128_wrapping(), 0x1234_5678_9abc_def0_1234_5678_9abc_def0 );
pub fn to_isize_wrapping(&self) -> isize[src]
pub fn to_isize_wrapping(&self) -> isizeConverts to an isize, wrapping if the value does not fit.
Examples
use rug::Integer; let large: Integer = (Integer::from(0x1000) << 128) | 0x1234; assert_eq!(large.to_isize_wrapping(), 0x1234);
pub fn to_u8_wrapping(&self) -> u8[src]
pub fn to_u8_wrapping(&self) -> u8Converts to a u8, wrapping if the value does not fit.
Examples
use rug::Integer; let neg = Integer::from(-1); assert_eq!(neg.to_u8_wrapping(), 0xff); let large = Integer::from(0x1234); assert_eq!(large.to_u8_wrapping(), 0x34);
pub fn to_u16_wrapping(&self) -> u16[src]
pub fn to_u16_wrapping(&self) -> u16Converts to a u16, wrapping if the value does not fit.
Examples
use rug::Integer; let neg = Integer::from(-1); assert_eq!(neg.to_u16_wrapping(), 0xffff); let large = Integer::from(0x1234_5678); assert_eq!(large.to_u16_wrapping(), 0x5678);
pub fn to_u32_wrapping(&self) -> u32[src]
pub fn to_u32_wrapping(&self) -> u32Converts to a u32, wrapping if the value does not fit.
Examples
use rug::Integer; let neg = Integer::from(-1); assert_eq!(neg.to_u32_wrapping(), 0xffff_ffff); let large = Integer::from(0x1234_5678_9abc_def0_u64); assert_eq!(large.to_u32_wrapping(), 0x9abc_def0);
pub fn to_u64_wrapping(&self) -> u64[src]
pub fn to_u64_wrapping(&self) -> u64Converts to a u64, wrapping if the value does not fit.
Examples
use rug::Integer; let neg = Integer::from(-1); assert_eq!(neg.to_u64_wrapping(), 0xffff_ffff_ffff_ffff); let large = Integer::from_str_radix("f123456789abcdef0", 16).unwrap(); assert_eq!(large.to_u64_wrapping(), 0x1234_5678_9abc_def0);
pub fn to_u128_wrapping(&self) -> u128[src]
pub fn to_u128_wrapping(&self) -> u128Converts to a u128, wrapping if the value does not fit.
This method is only present if the compiler supports the
u128 primitive.
Examples
use rug::Integer; let neg = Integer::from(-1); assert_eq!( neg.to_u128_wrapping(), 0xffff_ffff_ffff_ffff_ffff_ffff_ffff_ffff ); let s = "f123456789abcdef0123456789abcdef0"; let large = Integer::from_str_radix(s, 16).unwrap(); assert_eq!( large.to_u128_wrapping(), 0x1234_5678_9abc_def0_1234_5678_9abc_def0 );
pub fn to_usize_wrapping(&self) -> usize[src]
pub fn to_usize_wrapping(&self) -> usizeConverts to a usize, wrapping if the value does not fit.
Examples
use rug::Integer; let large: Integer = (Integer::from(0x1000) << 128) | 0x1234; assert_eq!(large.to_usize_wrapping(), 0x1234);
pub fn to_f32(&self) -> f32[src]
pub fn to_f32(&self) -> f32Converts to an f32, rounding towards zero.
Examples
use rug::Integer; use std::f32; let min = Integer::from_f32(f32::MIN).unwrap(); let min_minus_one = min - 1u32; // min_minus_one is truncated to f32::MIN assert_eq!(min_minus_one.to_f32(), f32::MIN); let times_two = min_minus_one * 2u32; // times_two is too small assert_eq!(times_two.to_f32(), f32::NEG_INFINITY);
pub fn to_f64(&self) -> f64[src]
pub fn to_f64(&self) -> f64Converts to an f64, rounding towards zero.
Examples
use rug::Integer; use std::f64; // An `f64` has 53 bits of precision. let exact = 0x1f_ffff_ffff_ffff_u64; let i = Integer::from(exact); assert_eq!(i.to_f64(), exact as f64); // large has 56 ones let large = 0xff_ffff_ffff_ffff_u64; // trunc has 53 ones followed by 3 zeros let trunc = 0xff_ffff_ffff_fff8_u64; let j = Integer::from(large); assert_eq!(j.to_f64() as u64, trunc); let max = Integer::from_f64(f64::MAX).unwrap(); let max_plus_one = max + 1u32; // max_plus_one is truncated to f64::MAX assert_eq!(max_plus_one.to_f64(), f64::MAX); let times_two = max_plus_one * 2u32; // times_two is too large assert_eq!(times_two.to_f64(), f64::INFINITY);
pub fn to_f32_exp(&self) -> (f32, u32)[src]
pub fn to_f32_exp(&self) -> (f32, u32)Converts to an f32 and an exponent, rounding towards zero.
The returned f32 is in the range 0.5 ≤ x < 1. If the
value is zero, (0.0, 0) is returned.
Examples
use rug::Integer; let zero = Integer::new(); let (d0, exp0) = zero.to_f32_exp(); assert_eq!((d0, exp0), (0.0, 0)); let fifteen = Integer::from(15); let (d15, exp15) = fifteen.to_f32_exp(); assert_eq!((d15, exp15), (15.0 / 16.0, 4));
pub fn to_f64_exp(&self) -> (f64, u32)[src]
pub fn to_f64_exp(&self) -> (f64, u32)Converts to an f64 and an exponent, rounding towards zero.
The returned f64 is in the range 0.5 ≤ x < 1. If the
value is zero, (0.0, 0) is returned.
Examples
use rug::Integer; let zero = Integer::new(); let (d0, exp0) = zero.to_f64_exp(); assert_eq!((d0, exp0), (0.0, 0)); let fifteen = Integer::from(15); let (d15, exp15) = fifteen.to_f64_exp(); assert_eq!((d15, exp15), (15.0 / 16.0, 4));
pub fn to_string_radix(&self, radix: i32) -> String[src]
pub fn to_string_radix(&self, radix: i32) -> StringReturns a string representation of the number for the
specified radix.
Panics
Panics if radix is less than 2 or greater than 36.
Examples
use rug::{Assign, Integer}; let mut i = Integer::new(); assert_eq!(i.to_string_radix(10), "0"); i.assign(-10); assert_eq!(i.to_string_radix(16), "-a"); i.assign(0x1234cdef); assert_eq!(i.to_string_radix(4), "102031030313233"); i.assign(Integer::parse_radix("123456789aAbBcCdDeEfF", 16).unwrap()); assert_eq!(i.to_string_radix(16), "123456789aabbccddeeff");
pub fn assign_f32(&mut self, val: f32) -> Result<(), ()>[src]
pub fn assign_f32(&mut self, val: f32) -> Result<(), ()>Assigns from an f32 if it is finite,
rounding towards zero.
Examples
use rug::Integer; use std::f32; let mut i = Integer::new(); let ret = i.assign_f64(-12.7); assert!(ret.is_ok()); assert_eq!(i, -12); let ret = i.assign_f32(f32::NAN); assert!(ret.is_err()); assert_eq!(i, -12);
pub fn assign_f64(&mut self, val: f64) -> Result<(), ()>[src]
pub fn assign_f64(&mut self, val: f64) -> Result<(), ()>Assigns from an f64 if it is finite,
rounding towards zero.
Examples
use rug::Integer; let mut i = Integer::new(); let ret = i.assign_f64(12.7); assert!(ret.is_ok()); assert_eq!(i, 12); let ret = i.assign_f64(1.0 / 0.0); assert!(ret.is_err()); assert_eq!(i, 12);
pub fn as_neg(&self) -> BorrowInteger[src]
pub fn as_neg(&self) -> BorrowIntegerBorrows a negated copy of the Integer.
The returned object implements
Deref<Target = Integer>.
This method performs a shallow copy and negates it, and negation does not change the allocated data.
Examples
use rug::Integer; let i = Integer::from(42); let neg_i = i.as_neg(); assert_eq!(*neg_i, -42); // methods taking &self can be used on the returned object let reneg_i = neg_i.as_neg(); assert_eq!(*reneg_i, 42); assert_eq!(*reneg_i, i);
pub fn as_abs(&self) -> BorrowInteger[src]
pub fn as_abs(&self) -> BorrowIntegerBorrows an absolute copy of the Integer.
The returned object implements
Deref<Target = Integer>.
This method performs a shallow copy and possibly negates it, and negation does not change the allocated data.
Examples
use rug::Integer; let i = Integer::from(-42); let abs_i = i.as_abs(); assert_eq!(*abs_i, 42); // methods taking &self can be used on the returned object let reabs_i = abs_i.as_abs(); assert_eq!(*reabs_i, 42); assert_eq!(*reabs_i, *abs_i);
pub fn is_even(&self) -> bool[src]
pub fn is_even(&self) -> boolReturns true if the number is even.
Examples
use rug::Integer; assert!(!(Integer::from(13).is_even())); assert!(Integer::from(-14).is_even());
pub fn is_odd(&self) -> bool[src]
pub fn is_odd(&self) -> boolReturns true if the number is odd.
Examples
use rug::Integer; assert!(Integer::from(13).is_odd()); assert!(!Integer::from(-14).is_odd());
pub fn is_divisible(&self, divisor: &Self) -> bool[src]
pub fn is_divisible(&self, divisor: &Self) -> boolReturns true if the number is divisible by divisor. Unlike
other division functions, divisor can be zero.
Examples
use rug::Integer; let i = Integer::from(230); assert!(i.is_divisible(&Integer::from(10))); assert!(!i.is_divisible(&Integer::from(100))); assert!(!i.is_divisible(&Integer::new()));
pub fn is_divisible_u(&self, divisor: u32) -> bool[src]
pub fn is_divisible_u(&self, divisor: u32) -> boolReturns true if the number is divisible by divisor. Unlike
other division functions, divisor can be zero.
Examples
use rug::Integer; let i = Integer::from(230); assert!(i.is_divisible_u(23)); assert!(!i.is_divisible_u(100)); assert!(!i.is_divisible_u(0));
pub fn is_divisible_2pow(&self, b: u32) -> bool[src]
pub fn is_divisible_2pow(&self, b: u32) -> boolReturns true if the number is divisible by 2b.
Examples
use rug::Integer; let i = Integer::from(15 << 17); assert!(i.is_divisible_2pow(16)); assert!(i.is_divisible_2pow(17)); assert!(!i.is_divisible_2pow(18));
pub fn is_congruent(&self, c: &Self, divisor: &Self) -> bool[src]
pub fn is_congruent(&self, c: &Self, divisor: &Self) -> boolReturns true if the number is congruent to c mod
divisor, that is, if there exists a q such that self =
c + q × divisor. Unlike other division functions,
divisor can be zero.
Examples
use rug::Integer; let n = Integer::from(105); let divisor = Integer::from(10); assert!(n.is_congruent(&Integer::from(5), &divisor)); assert!(n.is_congruent(&Integer::from(25), &divisor)); assert!(!n.is_congruent(&Integer::from(7), &divisor)); // n is congruent to itself if divisor is 0 assert!(n.is_congruent(&n, &Integer::from(0)));
pub fn is_congruent_u(&self, c: u32, divisor: u32) -> bool[src]
pub fn is_congruent_u(&self, c: u32, divisor: u32) -> boolReturns true if the number is congruent to c mod
divisor, that is, if there exists a q such that self =
c + q × divisor. Unlike other division functions,
divisor can be zero.
Examples
use rug::Integer; let n = Integer::from(105); assert!(n.is_congruent_u(3335, 10)); assert!(!n.is_congruent_u(107, 10)); // n is congruent to itself if divisor is 0 assert!(n.is_congruent_u(105, 0));
pub fn is_congruent_2pow(&self, c: &Self, b: u32) -> bool[src]
pub fn is_congruent_2pow(&self, c: &Self, b: u32) -> boolReturns true if the number is congruent to c mod
2b, that is, if there exists a q such that
self = c + q × 2b.
Examples
use rug::Integer; let n = Integer::from(13 << 17 | 21); assert!(n.is_congruent_2pow(&Integer::from(7 << 17 | 21), 17)); assert!(!n.is_congruent_2pow(&Integer::from(13 << 17 | 22), 17));
pub fn is_perfect_power(&self) -> bool[src]
pub fn is_perfect_power(&self) -> boolReturns true if the number is a perfect power.
Examples
use rug::Integer; // 0 is 0 to the power of anything assert!(Integer::from(0).is_perfect_power()); // 25 is 5 to the power of 2 assert!(Integer::from(25).is_perfect_power()); // -243 is -3 to the power of 5 assert!(Integer::from(243).is_perfect_power()); assert!(!Integer::from(24).is_perfect_power()); assert!(!Integer::from(-100).is_perfect_power());
pub fn is_perfect_square(&self) -> bool[src]
pub fn is_perfect_square(&self) -> boolReturns true if the number is a perfect square.
Examples
use rug::Integer; assert!(Integer::from(0).is_perfect_square()); assert!(Integer::from(1).is_perfect_square()); assert!(Integer::from(4).is_perfect_square()); assert!(Integer::from(9).is_perfect_square()); assert!(!Integer::from(15).is_perfect_square()); assert!(!Integer::from(-9).is_perfect_square());
pub fn is_power_of_two(&self) -> bool[src]
pub fn is_power_of_two(&self) -> boolReturns true if the number is a power of two.
Examples
use rug::Integer; assert!(Integer::from(1).is_power_of_two()); assert!(Integer::from(4).is_power_of_two()); assert!(Integer::from(1 << 30).is_power_of_two()); assert!(!Integer::from(7).is_power_of_two()); assert!(!Integer::from(0).is_power_of_two()); assert!(!Integer::from(-1).is_power_of_two());
pub fn cmp0(&self) -> Ordering[src]
pub fn cmp0(&self) -> OrderingReturns the same result as self.cmp(&0.into()), but
is faster.
Examples
use rug::Integer; use std::cmp::Ordering; assert_eq!(Integer::from(-5).cmp0(), Ordering::Less); assert_eq!(Integer::from(0).cmp0(), Ordering::Equal); assert_eq!(Integer::from(5).cmp0(), Ordering::Greater);
pub fn cmp_abs(&self, other: &Self) -> Ordering[src]
pub fn cmp_abs(&self, other: &Self) -> OrderingCompares the absolute values.
Examples
use rug::Integer; use std::cmp::Ordering; let a = Integer::from(-10); let b = Integer::from(4); assert_eq!(a.cmp(&b), Ordering::Less); assert_eq!(a.cmp_abs(&b), Ordering::Greater);
pub fn significant_bits(&self) -> u32[src]
pub fn significant_bits(&self) -> u32Returns the number of bits required to represent the absolute value.
Examples
use rug::Integer; assert_eq!(Integer::from(0).significant_bits(), 0); // “” assert_eq!(Integer::from(1).significant_bits(), 1); // “1” assert_eq!(Integer::from(4).significant_bits(), 3); // “100” assert_eq!(Integer::from(7).significant_bits(), 3); // “111” assert_eq!(Integer::from(-1).significant_bits(), 1); // “1” assert_eq!(Integer::from(-4).significant_bits(), 3); // “100” assert_eq!(Integer::from(-7).significant_bits(), 3); // “111”
pub fn signed_bits(&self) -> u32[src]
pub fn signed_bits(&self) -> u32Returns the number of bits required to represent the value using a two’s-complement representation.
For non-negative numbers, this method returns one more than
the significant_bits method, since an extra zero is needed
before the most significant bit.
Examples
use rug::Integer; assert_eq!(Integer::from(-5).signed_bits(), 4); // “1011” assert_eq!(Integer::from(-4).signed_bits(), 3); // “100” assert_eq!(Integer::from(-3).signed_bits(), 3); // “101” assert_eq!(Integer::from(-2).signed_bits(), 2); // “10” assert_eq!(Integer::from(-1).signed_bits(), 1); // “1” assert_eq!(Integer::from(0).signed_bits(), 1); // “0” assert_eq!(Integer::from(1).signed_bits(), 2); // “01” assert_eq!(Integer::from(2).signed_bits(), 3); // “010” assert_eq!(Integer::from(3).signed_bits(), 3); // “011” assert_eq!(Integer::from(4).signed_bits(), 4); // “0100”
pub fn count_ones(&self) -> Option<u32>[src]
pub fn count_ones(&self) -> Option<u32>Returns the number of one bits if the value ≥ 0.
Examples
use rug::Integer; assert_eq!(Integer::from(0).count_ones(), Some(0)); assert_eq!(Integer::from(15).count_ones(), Some(4)); assert_eq!(Integer::from(-1).count_ones(), None);
pub fn count_zeros(&self) -> Option<u32>[src]
pub fn count_zeros(&self) -> Option<u32>Returns the number of zero bits if the value < 0.
Examples
use rug::Integer; assert_eq!(Integer::from(0).count_zeros(), None); assert_eq!(Integer::from(1).count_zeros(), None); assert_eq!(Integer::from(-1).count_zeros(), Some(0)); assert_eq!(Integer::from(-2).count_zeros(), Some(1)); assert_eq!(Integer::from(-7).count_zeros(), Some(2)); assert_eq!(Integer::from(-8).count_zeros(), Some(3));
pub fn find_zero(&self, start: u32) -> Option<u32>[src]
pub fn find_zero(&self, start: u32) -> Option<u32>Returns the location of the first zero, starting at start.
If the bit at location start is zero, returns start.
use rug::Integer; // -2 is ...11111110 assert_eq!(Integer::from(-2).find_zero(0), Some(0)); assert_eq!(Integer::from(-2).find_zero(1), None); // 15 is ...00001111 assert_eq!(Integer::from(15).find_zero(0), Some(4)); assert_eq!(Integer::from(15).find_zero(20), Some(20));
pub fn find_one(&self, start: u32) -> Option<u32>[src]
pub fn find_one(&self, start: u32) -> Option<u32>Returns the location of the first one, starting at start.
If the bit at location start is one, returns start.
use rug::Integer; // 1 is ...00000001 assert_eq!(Integer::from(1).find_one(0), Some(0)); assert_eq!(Integer::from(1).find_one(1), None); // -16 is ...11110000 assert_eq!(Integer::from(-16).find_one(0), Some(4)); assert_eq!(Integer::from(-16).find_one(20), Some(20));
pub fn set_bit(&mut self, index: u32, val: bool) -> &mut Self[src]
pub fn set_bit(&mut self, index: u32, val: bool) -> &mut SelfSets the bit at location index to 1 if val is true or
0 if val is false.
Examples
use rug::{Assign, Integer}; let mut i = Integer::from(-1); assert_eq!(*i.set_bit(0, false), -2); i.assign(0xff); assert_eq!(*i.set_bit(11, true), 0x8ff);
pub fn get_bit(&self, index: u32) -> bool[src]
pub fn get_bit(&self, index: u32) -> boolReturns true if the bit at location index is 1 or
false if the bit is 0.
Examples
use rug::Integer; let i = Integer::from(0b100101); assert!(i.get_bit(0)); assert!(!i.get_bit(1)); assert!(i.get_bit(5)); let neg = Integer::from(-1); assert!(neg.get_bit(1000));
pub fn toggle_bit(&mut self, index: u32) -> &mut Self[src]
pub fn toggle_bit(&mut self, index: u32) -> &mut SelfToggles the bit at location index.
Examples
use rug::Integer; let mut i = Integer::from(0b100101); i.toggle_bit(5); assert_eq!(i, 0b101);
pub fn hamming_dist(&self, other: &Self) -> Option<u32>[src]
pub fn hamming_dist(&self, other: &Self) -> Option<u32>Retuns the Hamming distance if the two numbers have the same sign.
The Hamming distance is the number of different bits.
Examples
use rug::Integer; let i = Integer::from(-1); assert_eq!(Integer::from(0).hamming_dist(&i), None); assert_eq!(Integer::from(-1).hamming_dist(&i), Some(0)); // -1 is ...11111111 and -13 is ...11110011 assert_eq!(Integer::from(-13).hamming_dist(&i), Some(2));
pub fn sum<'a, I>(values: I) -> SumIncomplete<'a, I> where
I: Iterator<Item = &'a Self>, [src]
pub fn sum<'a, I>(values: I) -> SumIncomplete<'a, I> where
I: Iterator<Item = &'a Self>, Adds a list of Integer values.
Assign<Src> for Integer,
From<Src> for Integer,
AddAssign<Src> for Integer and
Add<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let values = [ Integer::from(5), Integer::from(1024), Integer::from(-100_000), Integer::from(-4), ]; let r = Integer::sum(values.iter()); let sum = Integer::from(r); let expected = 5 + 1024 - 100_000 - 4; assert_eq!(sum, expected);
pub fn dot<'a, I>(values: I) -> DotIncomplete<'a, I> where
I: Iterator<Item = (&'a Self, &'a Self)>, [src]
pub fn dot<'a, I>(values: I) -> DotIncomplete<'a, I> where
I: Iterator<Item = (&'a Self, &'a Self)>, Finds the dot product of a list of Integer value pairs.
Assign<Src> for Integer,
From<Src> for Integer,
AddAssign<Src> for Integer and
Add<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let a = [Integer::from(270), Integer::from(-11)]; let b = [Integer::from(100), Integer::from(5)]; let r = Integer::dot(a.iter().zip(b.iter())); let dot = Integer::from(r); let expected = 270 * 100 - 11 * 5; assert_eq!(dot, expected);
pub fn product<'a, I>(values: I) -> ProductIncomplete<'a, I> where
I: Iterator<Item = &'a Self>, [src]
pub fn product<'a, I>(values: I) -> ProductIncomplete<'a, I> where
I: Iterator<Item = &'a Self>, Multiplies a list of Integer values.
Assign<Src> for Integer,
From<Src> for Integer,
MulAssign<Src> for Integer and
Mul<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let values = [ Integer::from(5), Integer::from(1024), Integer::from(-100_000), Integer::from(-4), ]; let r = Integer::product(values.iter()); let product = Integer::from(r); let expected = 5 * 1024 * -100_000 * -4; assert_eq!(product, expected);
pub fn abs(self) -> Self[src]
pub fn abs(self) -> SelfComputes the absolute value.
Examples
use rug::Integer; let i = Integer::from(-100); let abs = i.abs(); assert_eq!(abs, 100);
pub fn abs_mut(&mut self)[src]
pub fn abs_mut(&mut self)Computes the absolute value.
Examples
use rug::Integer; let mut i = Integer::from(-100); i.abs_mut(); assert_eq!(i, 100);
pub fn abs_ref(&self) -> AbsIncomplete[src]
pub fn abs_ref(&self) -> AbsIncompleteComputes the absolute value.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let i = Integer::from(-100); let r = i.abs_ref(); let abs = Integer::from(r); assert_eq!(abs, 100); assert_eq!(i, -100);
pub fn signum(self) -> Self[src]
pub fn signum(self) -> SelfComputes the signum.
- 0 if the value is zero
- 1 if the value is positive
- −1 if the value is negative
Examples
use rug::Integer; assert_eq!(Integer::from(-100).signum(), -1); assert_eq!(Integer::from(0).signum(), 0); assert_eq!(Integer::from(100).signum(), 1);
pub fn signum_mut(&mut self)[src]
pub fn signum_mut(&mut self)Computes the signum.
- 0 if the value is zero
- 1 if the value is positive
- −1 if the value is negative
Examples
use rug::Integer; let mut i = Integer::from(-100); i.signum_mut(); assert_eq!(i, -1);
pub fn signum_ref(&self) -> SignumIncomplete[src]
pub fn signum_ref(&self) -> SignumIncompleteComputes the signum.
- 0 if the value is zero
- 1 if the value is positive
- −1 if the value is negative
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let i = Integer::from(-100); let r = i.signum_ref(); let signum = Integer::from(r); assert_eq!(signum, -1); assert_eq!(i, -100);
pub fn clamp<'a, 'b, Min, Max>(self, min: &'a Min, max: &'b Max) -> Self where
Self: PartialOrd<Min> + PartialOrd<Max> + Assign<&'a Min> + Assign<&'b Max>, [src]
pub fn clamp<'a, 'b, Min, Max>(self, min: &'a Min, max: &'b Max) -> Self where
Self: PartialOrd<Min> + PartialOrd<Max> + Assign<&'a Min> + Assign<&'b Max>, Clamps the value within the specified bounds.
Panics
Panics if the maximum value is less than the minimum value.
Examples
use rug::Integer; let min = -10; let max = 10; let too_small = Integer::from(-100); let clamped1 = too_small.clamp(&min, &max); assert_eq!(clamped1, -10); let in_range = Integer::from(3); let clamped2 = in_range.clamp(&min, &max); assert_eq!(clamped2, 3);
pub fn clamp_mut<'a, 'b, Min, Max>(&mut self, min: &'a Min, max: &'b Max) where
Self: PartialOrd<Min> + PartialOrd<Max> + Assign<&'a Min> + Assign<&'b Max>, [src]
pub fn clamp_mut<'a, 'b, Min, Max>(&mut self, min: &'a Min, max: &'b Max) where
Self: PartialOrd<Min> + PartialOrd<Max> + Assign<&'a Min> + Assign<&'b Max>, Clamps the value within the specified bounds.
Panics
Panics if the maximum value is less than the minimum value.
Examples
use rug::Integer; let min = -10; let max = 10; let mut too_small = Integer::from(-100); too_small.clamp_mut(&min, &max); assert_eq!(too_small, -10); let mut in_range = Integer::from(3); in_range.clamp_mut(&min, &max); assert_eq!(in_range, 3);
pub fn clamp_ref<'a, Min, Max>(
&'a self,
min: &'a Min,
max: &'a Max
) -> ClampIncomplete<'a, Min, Max> where
Self: PartialOrd<Min> + PartialOrd<Max> + Assign<&'a Min> + Assign<&'a Max>, [src]
pub fn clamp_ref<'a, Min, Max>(
&'a self,
min: &'a Min,
max: &'a Max
) -> ClampIncomplete<'a, Min, Max> where
Self: PartialOrd<Min> + PartialOrd<Max> + Assign<&'a Min> + Assign<&'a Max>, Clamps the value within the specified bounds.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Panics
Panics if the maximum value is less than the minimum value.
Examples
use rug::Integer; let min = -10; let max = 10; let too_small = Integer::from(-100); let r1 = too_small.clamp_ref(&min, &max); let clamped1 = Integer::from(r1); assert_eq!(clamped1, -10); let in_range = Integer::from(3); let r2 = in_range.clamp_ref(&min, &max); let clamped2 = Integer::from(r2); assert_eq!(clamped2, 3);
pub fn keep_bits(self, n: u32) -> Self[src]
pub fn keep_bits(self, n: u32) -> SelfKeeps the n least significant bits only, producing a result that is greater or equal to 0.
Examples
use rug::Integer; let i = Integer::from(-1); let keep_8 = i.keep_bits(8); assert_eq!(keep_8, 0xff);
pub fn keep_bits_mut(&mut self, n: u32)[src]
pub fn keep_bits_mut(&mut self, n: u32)Keeps the n least significant bits only, producing a result that is greater or equal to 0.
Examples
use rug::Integer; let mut i = Integer::from(-1); i.keep_bits_mut(8); assert_eq!(i, 0xff);
pub fn keep_bits_ref(&self, n: u32) -> KeepBitsIncomplete[src]
pub fn keep_bits_ref(&self, n: u32) -> KeepBitsIncompleteKeeps the n least significant bits only, producing a result that is greater or equal to 0.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let i = Integer::from(-1); let r = i.keep_bits_ref(8); let eight_bits = Integer::from(r); assert_eq!(eight_bits, 0xff);
pub fn keep_signed_bits(self, n: u32) -> Self[src]
pub fn keep_signed_bits(self, n: u32) -> SelfKeeps the n least significant bits only, producing a negative result if the nth least significant bit is one.
Examples
use rug::Integer; let i = Integer::from(-1); let i_keep_8 = i.keep_signed_bits(8); assert_eq!(i_keep_8, -1); let j = Integer::from(15 << 8 | 15); let j_keep_8 = j.keep_signed_bits(8); assert_eq!(j_keep_8, 15);
pub fn keep_signed_bits_mut(&mut self, n: u32)[src]
pub fn keep_signed_bits_mut(&mut self, n: u32)Keeps the n least significant bits only, producing a negative result if the nth least significant bit is one.
Examples
use rug::Integer; let mut i = Integer::from(-1); i.keep_signed_bits_mut(8); assert_eq!(i, -1); let mut j = Integer::from(15 << 8 | 15); j.keep_signed_bits_mut(8); assert_eq!(j, 15);
pub fn keep_signed_bits_ref(&self, n: u32) -> KeepSignedBitsIncomplete[src]
pub fn keep_signed_bits_ref(&self, n: u32) -> KeepSignedBitsIncompleteKeeps the n least significant bits only, producing a negative result if the nth least significant bit is one.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let i = Integer::from(-1); let r = i.keep_signed_bits_ref(8); let eight_bits = Integer::from(r); assert_eq!(eight_bits, -1);
pub fn next_power_of_two(self) -> Self[src]
pub fn next_power_of_two(self) -> SelfFinds the next power of two, or 1 if the number ≤ 0.
Examples
use rug::Integer; let i = Integer::from(-3).next_power_of_two(); assert_eq!(i, 1); let i = Integer::from(4).next_power_of_two(); assert_eq!(i, 4); let i = Integer::from(7).next_power_of_two(); assert_eq!(i, 8);
pub fn next_power_of_two_mut(&mut self)[src]
pub fn next_power_of_two_mut(&mut self)Finds the next power of two, or 1 if the number ≤ 0.
Examples
use rug::Integer; let mut i = Integer::from(53); i.next_power_of_two_mut(); assert_eq!(i, 64);
pub fn next_power_of_two_ref(&self) -> NextPowerOfTwoIncomplete[src]
pub fn next_power_of_two_ref(&self) -> NextPowerOfTwoIncompleteFinds the next power of two, or 1 if the number ≤ 0.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let i = Integer::from(53); let r = i.next_power_of_two_ref(); let next = Integer::from(r); assert_eq!(next, 64);
pub fn div_rem(self, divisor: Self) -> (Self, Self)[src]
pub fn div_rem(self, divisor: Self) -> (Self, Self)Performs a division producing both the quotient and remainder.
The remainder has the same sign as the dividend.
Panics
Panics if divisor is zero.
Examples
use rug::Integer; let dividend = Integer::from(23); let divisor = Integer::from(-10); let (quotient, rem) = dividend.div_rem(divisor); assert_eq!(quotient, -2); assert_eq!(rem, 3);
pub fn div_rem_mut(&mut self, divisor: &mut Self)[src]
pub fn div_rem_mut(&mut self, divisor: &mut Self)Performs a division producing both the quotient and remainder.
The remainder has the same sign as the dividend.
The quotient is stored in self and the remainder is
stored in divisor.
Panics
Panics if divisor is zero.
Examples
use rug::Integer; let mut dividend_quotient = Integer::from(-23); let mut divisor_rem = Integer::from(10); dividend_quotient.div_rem_mut(&mut divisor_rem); assert_eq!(dividend_quotient, -2); assert_eq!(divisor_rem, -3);
pub fn div_rem_ref<'a>(&'a self, divisor: &'a Self) -> DivRemIncomplete[src]
pub fn div_rem_ref<'a>(&'a self, divisor: &'a Self) -> DivRemIncompletePerforms a division producing both the quotient and remainder.
Assign<Src> for (Integer, Integer),
Assign<Src> for (&mut Integer, &mut Integer)
and From<Src> for (Integer, Integer) are
implemented with the returned
incomplete-computation value as Src.
The remainder has the same sign as the dividend.
Examples
use rug::Integer; let dividend = Integer::from(-23); let divisor = Integer::from(-10); let r = dividend.div_rem_ref(&divisor); let (quotient, rem) = <(Integer, Integer)>::from(r); assert_eq!(quotient, 2); assert_eq!(rem, -3);
pub fn div_rem_ceil(self, divisor: Self) -> (Self, Self)[src]
pub fn div_rem_ceil(self, divisor: Self) -> (Self, Self)Performs a division producing both the quotient and remainder, with the quotient rounded up.
The sign of the remainder is the opposite of the divisor’s sign.
Panics
Panics if divisor is zero.
Examples
use rug::Integer; let dividend = Integer::from(23); let divisor = Integer::from(-10); let (quotient, rem) = dividend.div_rem_ceil(divisor); assert_eq!(quotient, -2); assert_eq!(rem, 3);
pub fn div_rem_ceil_mut(&mut self, divisor: &mut Self)[src]
pub fn div_rem_ceil_mut(&mut self, divisor: &mut Self)Performs a division producing both the quotient and remainder, with the quotient rounded up.
The sign of the remainder is the opposite of the divisor’s sign.
The quotient is stored in self and the remainder is
stored in divisor.
Panics
Panics if divisor is zero.
Examples
use rug::Integer; let mut dividend_quotient = Integer::from(-23); let mut divisor_rem = Integer::from(10); dividend_quotient.div_rem_ceil_mut(&mut divisor_rem); assert_eq!(dividend_quotient, -2); assert_eq!(divisor_rem, -3);
pub fn div_rem_ceil_ref<'a>(&'a self, divisor: &'a Self) -> DivRemCeilIncomplete[src]
pub fn div_rem_ceil_ref<'a>(&'a self, divisor: &'a Self) -> DivRemCeilIncompletePerforms a division producing both the quotient and remainder, with the quotient rounded up.
The sign of the remainder is the opposite of the divisor’s sign.
Assign<Src> for (Integer, Integer),
Assign<Src> for (&mut Integer, &mut Integer)
and From<Src> for (Integer, Integer) are
implemented with the returned
incomplete-computation value as Src.
Examples
use rug::Integer; let dividend = Integer::from(-23); let divisor = Integer::from(-10); let r = dividend.div_rem_ceil_ref(&divisor); let (quotient, rem) = <(Integer, Integer)>::from(r); assert_eq!(quotient, 3); assert_eq!(rem, 7);
pub fn div_rem_floor(self, divisor: Self) -> (Self, Self)[src]
pub fn div_rem_floor(self, divisor: Self) -> (Self, Self)Performs a division producing both the quotient and remainder, with the quotient rounded down.
The remainder has the same sign as the divisor.
Panics
Panics if divisor is zero.
Examples
use rug::Integer; let dividend = Integer::from(23); let divisor = Integer::from(-10); let (quotient, rem) = dividend.div_rem_floor(divisor); assert_eq!(quotient, -3); assert_eq!(rem, -7);
pub fn div_rem_floor_mut(&mut self, divisor: &mut Self)[src]
pub fn div_rem_floor_mut(&mut self, divisor: &mut Self)Performs a division producing both the quotient and remainder, with the quotient rounded down.
The remainder has the same sign as the divisor.
The quotient is stored in self and the remainder is
stored in divisor.
Panics
Panics if divisor is zero.
Examples
use rug::Integer; let mut dividend_quotient = Integer::from(-23); let mut divisor_rem = Integer::from(10); dividend_quotient.div_rem_floor_mut(&mut divisor_rem); assert_eq!(dividend_quotient, -3); assert_eq!(divisor_rem, 7);
pub fn div_rem_floor_ref<'a>(
&'a self,
divisor: &'a Self
) -> DivRemFloorIncomplete[src]
pub fn div_rem_floor_ref<'a>(
&'a self,
divisor: &'a Self
) -> DivRemFloorIncompletePerforms a division producing both the quotient and remainder, with the quotient rounded down.
The remainder has the same sign as the divisor.
Assign<Src> for (Integer, Integer),
Assign<Src> for (&mut Integer, &mut Integer)
and From<Src> for (Integer, Integer) are
implemented with the returned
incomplete-computation value as Src.
Examples
use rug::Integer; let dividend = Integer::from(-23); let divisor = Integer::from(-10); let r = dividend.div_rem_floor_ref(&divisor); let (quotient, rem) = <(Integer, Integer)>::from(r); assert_eq!(quotient, 2); assert_eq!(rem, -3);
pub fn div_rem_round(self, divisor: Self) -> (Self, Self)[src]
pub fn div_rem_round(self, divisor: Self) -> (Self, Self)Performs a division producing both the quotient and remainder, with the quotient rounded to the nearest integer.
When the quotient before rounding lies exactly between two integers, it is rounded away from zero.
Panics
Panics if divisor is zero.
Examples
use rug::Integer; // 23 / -10 -> -2 rem 3 let (q, rem) = Integer::from(23).div_rem_round((-10).into()); assert!(q == -2 && rem == 3); // 25 / 10 -> 3 rem -5 let (q, rem) = Integer::from(25).div_rem_round(10.into()); assert!(q == 3 && rem == -5); // -27 / 10 -> -3 rem 3 let (q, rem) = Integer::from(-27).div_rem_round(10.into()); assert!(q == -3 && rem == 3);
pub fn div_rem_round_mut(&mut self, divisor: &mut Self)[src]
pub fn div_rem_round_mut(&mut self, divisor: &mut Self)Performs a division producing both the quotient and remainder, with the quotient rounded to the nearest integer.
When the quotient before rounding lies exactly between two integers, it is rounded away from zero.
Panics
Panics if divisor is zero.
Examples
use rug::Integer; // -25 / -10 -> 3 rem 5 let mut dividend_quotient = Integer::from(-25); let mut divisor_rem = Integer::from(-10); dividend_quotient.div_rem_round_mut(&mut divisor_rem); assert_eq!(dividend_quotient, 3); assert_eq!(divisor_rem, 5);
pub fn div_rem_round_ref<'a>(
&'a self,
divisor: &'a Self
) -> DivRemRoundIncomplete[src]
pub fn div_rem_round_ref<'a>(
&'a self,
divisor: &'a Self
) -> DivRemRoundIncompletePerforms a division producing both the quotient and remainder, with the quotient rounded to the nearest integer.
When the quotient before rounding lies exactly between two integers, it is rounded away from zero.
Assign<Src> for (Integer, Integer),
Assign<Src> for (&mut Integer, &mut Integer)
and From<Src> for (Integer, Integer) are
implemented with the returned
incomplete-computation value as Src.
Examples
use rug::Integer; // -28 / -10 -> 3 rem 2 let dividend = Integer::from(-28); let divisor = Integer::from(-10); let r = dividend.div_rem_round_ref(&divisor); let (quotient, rem) = <(Integer, Integer)>::from(r); assert_eq!(quotient, 3); assert_eq!(rem, 2);
pub fn div_rem_euc(self, divisor: Self) -> (Self, Self)[src]
pub fn div_rem_euc(self, divisor: Self) -> (Self, Self)Performs Euclidean division producing both the quotient and remainder, with a positive remainder.
Panics
Panics if divisor is zero.
Examples
use rug::Integer; let dividend = Integer::from(23); let divisor = Integer::from(-10); let (quotient, rem) = dividend.div_rem_euc(divisor); assert_eq!(quotient, -2); assert_eq!(rem, 3);
pub fn div_rem_euc_mut(&mut self, divisor: &mut Self)[src]
pub fn div_rem_euc_mut(&mut self, divisor: &mut Self)Performs Euclidean division producing both the quotient and remainder, with a positive remainder.
The quotient is stored in self and the remainder is
stored in divisor.
Panics
Panics if divisor is zero.
Examples
use rug::Integer; let mut dividend_quotient = Integer::from(-23); let mut divisor_rem = Integer::from(10); dividend_quotient.div_rem_euc_mut(&mut divisor_rem); assert_eq!(dividend_quotient, -3); assert_eq!(divisor_rem, 7);
pub fn div_rem_euc_ref<'a>(&'a self, divisor: &'a Self) -> DivRemEucIncomplete[src]
pub fn div_rem_euc_ref<'a>(&'a self, divisor: &'a Self) -> DivRemEucIncompletePerforms Euclidan division producing both the quotient and remainder, with a positive remainder.
Assign<Src> for (Integer, Integer),
Assign<Src> for (&mut Integer, &mut Integer)
and From<Src> for (Integer, Integer) are
implemented with the returned
incomplete-computation value as Src.
Examples
use rug::Integer; let dividend = Integer::from(-23); let divisor = Integer::from(-10); let r = dividend.div_rem_euc_ref(&divisor); let (quotient, rem) = <(Integer, Integer)>::from(r); assert_eq!(quotient, 3); assert_eq!(rem, 7);
pub fn mod_u(&self, modulo: u32) -> u32[src]
pub fn mod_u(&self, modulo: u32) -> u32Returns the modulo, or the remainder of Euclidean division by
a u32.
The result is always zero or positive.
Panics
Panics if modulo is zero.
Examples
use rug::Integer; let pos = Integer::from(23); assert_eq!(pos.mod_u(1), 0); assert_eq!(pos.mod_u(10), 3); assert_eq!(pos.mod_u(100), 23); let neg = Integer::from(-23); assert_eq!(neg.mod_u(1), 0); assert_eq!(neg.mod_u(10), 7); assert_eq!(neg.mod_u(100), 77);
pub fn div_exact(self, divisor: &Self) -> Self[src]
pub fn div_exact(self, divisor: &Self) -> SelfPerforms an exact division.
This is much faster than normal division, but produces correct results only when the division is exact.
Panics
Panics if divisor is zero.
Examples
use rug::Integer; let i = Integer::from(12345 * 54321); let quotient = i.div_exact(&Integer::from(12345)); assert_eq!(quotient, 54321);
pub fn div_exact_mut(&mut self, divisor: &Self)[src]
pub fn div_exact_mut(&mut self, divisor: &Self)Performs an exact division.
This is much faster than normal division, but produces correct results only when the division is exact.
Panics
Panics if divisor is zero.
Examples
use rug::Integer; let mut i = Integer::from(12345 * 54321); i.div_exact_mut(&Integer::from(12345)); assert_eq!(i, 54321);
pub fn div_exact_ref<'a>(&'a self, divisor: &'a Self) -> DivExactIncomplete[src]
pub fn div_exact_ref<'a>(&'a self, divisor: &'a Self) -> DivExactIncompletePerforms an exact division.
This is much faster than normal division, but produces correct results only when the division is exact.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let i = Integer::from(12345 * 54321); let divisor = Integer::from(12345); let r = i.div_exact_ref(&divisor); let quotient = Integer::from(r); assert_eq!(quotient, 54321);
pub fn div_exact_u(self, divisor: u32) -> Self[src]
pub fn div_exact_u(self, divisor: u32) -> SelfPerforms an exact division.
This is much faster than normal division, but produces correct results only when the division is exact.
Panics
Panics if divisor is zero.
Examples
use rug::Integer; let i = Integer::from(12345 * 54321); let q = i.div_exact_u(12345); assert_eq!(q, 54321);
pub fn div_exact_u_mut(&mut self, divisor: u32)[src]
pub fn div_exact_u_mut(&mut self, divisor: u32)Performs an exact division.
This is much faster than normal division, but produces correct results only when the division is exact.
Panics
Panics if divisor is zero.
Examples
use rug::Integer; let mut i = Integer::from(12345 * 54321); i.div_exact_u_mut(12345); assert_eq!(i, 54321);
pub fn div_exact_u_ref(&self, divisor: u32) -> DivExactUIncomplete[src]
pub fn div_exact_u_ref(&self, divisor: u32) -> DivExactUIncompletePerforms an exact division.
This is much faster than normal division, but produces correct results only when the division is exact.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let i = Integer::from(12345 * 54321); let r = i.div_exact_u_ref(12345); assert_eq!(Integer::from(r), 54321);
pub fn invert(self, modulo: &Self) -> Result<Self, Self>[src]
pub fn invert(self, modulo: &Self) -> Result<Self, Self>Finds the inverse modulo modulo and returns
Ok(inverse) if it exists, or
Err(unchanged) if the inverse does not exist.
The inverse exists if the modulo is not zero, and self and
the modulo are co-prime, that is their GCD is 1.
Examples
use rug::Integer; let n = Integer::from(2); // Modulo 4, 2 has no inverse: there is no x such that 2 * x = 1. let inv_mod_4 = match n.invert(&Integer::from(4)) { Ok(_) => unreachable!(), Err(unchanged) => unchanged, }; // no inverse exists, so value is unchanged assert_eq!(inv_mod_4, 2); let n = inv_mod_4; // Modulo 5, the inverse of 2 is 3, as 2 * 3 = 1. let inv_mod_5 = match n.invert(&Integer::from(5)) { Ok(inverse) => inverse, Err(_) => unreachable!(), }; assert_eq!(inv_mod_5, 3);
pub fn invert_mut(&mut self, modulo: &Self) -> Result<(), ()>[src]
pub fn invert_mut(&mut self, modulo: &Self) -> Result<(), ()>Finds the inverse modulo modulo if an inverse exists.
The inverse exists if the modulo is not zero, and self and
the modulo are co-prime, that is their GCD is 1.
Examples
use rug::Integer; let mut n = Integer::from(2); // Modulo 4, 2 has no inverse: there is no x such that 2 * x = 1. match n.invert_mut(&Integer::from(4)) { Ok(()) => unreachable!(), Err(()) => assert_eq!(n, 2), } // Modulo 5, the inverse of 2 is 3, as 2 * 3 = 1. match n.invert_mut(&Integer::from(5)) { Ok(()) => assert_eq!(n, 3), Err(()) => unreachable!(), }
pub fn invert_ref<'a>(
&'a self,
modulo: &'a Self
) -> Option<InvertIncomplete<'a>>[src]
pub fn invert_ref<'a>(
&'a self,
modulo: &'a Self
) -> Option<InvertIncomplete<'a>>Finds the inverse modulo modulo if an inverse exists.
The inverse exists if the modulo is not zero, and self and
the modulo are co-prime, that is their GCD is 1.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
unwrapped returned incomplete-computation value as
Src.
Examples
use rug::Integer; let two = Integer::from(2); let four = Integer::from(4); let five = Integer::from(5); // Modulo 4, 2 has no inverse, there is no x such that 2 * x = 1. // For this conversion, if no inverse exists, the Integer // created is left unchanged as 0. assert!(two.invert_ref(&four).is_none()); // Modulo 5, the inverse of 2 is 3, as 2 * 3 = 1. let r = two.invert_ref(&five).unwrap(); let inverse = Integer::from(r); assert_eq!(inverse, 3);
pub fn pow_mod(self, exponent: &Self, modulo: &Self) -> Result<Self, Self>[src]
pub fn pow_mod(self, exponent: &Self, modulo: &Self) -> Result<Self, Self>Raises a number to the power of exponent modulo modulo and
returns Ok(power) if an answer exists, or
Err(unchanged) if it does not.
If the exponent is negative, then the number must have an inverse for an answer to exist.
When the exponent is positive and the modulo is not zero, an answer always exists.
Examples
use rug::Integer; // 7 ^ 5 = 16807 let n = Integer::from(7); let e = Integer::from(5); let m = Integer::from(1000); let power = match n.pow_mod(&e, &m) { Ok(power) => power, Err(_) => unreachable!(), }; assert_eq!(power, 807);
When the exponent is negative, an answer exists if an inverse exists.
use rug::Integer; // 7 * 143 modulo 1000 = 1, so 7 has an inverse 143. // 7 ^ -5 modulo 1000 = 143 ^ 5 modulo 1000 = 943. let n = Integer::from(7); let e = Integer::from(-5); let m = Integer::from(1000); let power = match n.pow_mod(&e, &m) { Ok(power) => power, Err(_) => unreachable!(), }; assert_eq!(power, 943);
pub fn pow_mod_mut(&mut self, exponent: &Self, modulo: &Self) -> Result<(), ()>[src]
pub fn pow_mod_mut(&mut self, exponent: &Self, modulo: &Self) -> Result<(), ()>Raises a number to the power of exponent modulo modulo if
an answer exists.
If the exponent is negative, then the number must have an inverse for an answer to exist.
Examples
use rug::{Assign, Integer}; // Modulo 1000, 2 has no inverse: there is no x such that 2 * x = 1. let mut n = Integer::from(2); let e = Integer::from(-5); let m = Integer::from(1000); match n.pow_mod_mut(&e, &m) { Ok(()) => unreachable!(), Err(()) => assert_eq!(n, 2), } // 7 * 143 modulo 1000 = 1, so 7 has an inverse 143. // 7 ^ -5 modulo 1000 = 143 ^ 5 modulo 1000 = 943. n.assign(7); match n.pow_mod_mut(&e, &m) { Ok(()) => assert_eq!(n, 943), Err(()) => unreachable!(), }
pub fn pow_mod_ref<'a>(
&'a self,
exponent: &'a Self,
modulo: &'a Self
) -> Option<PowModIncomplete<'a>>[src]
pub fn pow_mod_ref<'a>(
&'a self,
exponent: &'a Self,
modulo: &'a Self
) -> Option<PowModIncomplete<'a>>Raises a number to the power of exponent modulo modulo if
an answer exists.
If the exponent is negative, then the number must have an inverse for an answer to exist.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
unwrapped returned incomplete-computation value as
Src.
Examples
use rug::Integer; let two = Integer::from(2); let thousand = Integer::from(1000); let minus_five = Integer::from(-5); let seven = Integer::from(7); // Modulo 1000, 2 has no inverse: there is no x such that 2 * x = 1. assert!(two.pow_mod_ref(&minus_five, &thousand).is_none()); // 7 * 143 modulo 1000 = 1, so 7 has an inverse 143. // 7 ^ -5 modulo 1000 = 143 ^ 5 modulo 1000 = 943. let r = seven.pow_mod_ref(&minus_five, &thousand).unwrap(); let power = Integer::from(r); assert_eq!(power, 943);
pub fn secure_pow_mod(self, exponent: &Self, modulo: &Self) -> Self[src]
pub fn secure_pow_mod(self, exponent: &Self, modulo: &Self) -> SelfRaises a number to the power of exponent modulo modulo,
with resilience to side-channel attacks.
The exponent must be greater than zero, and the modulo must be odd.
This method is intended for cryptographic purposes where resilience to side-channel attacks is desired. The function is designed to take the same time and use the same cache access patterns for same-sized arguments, assuming that the arguments are placed at the same position and the machine state is identical when starting.
Panics
Panics if exponent ≤ 0 or if modulo is even.
Examples
use rug::Integer; // 7 ^ 4 mod 13 = 9 let n = Integer::from(7); let e = Integer::from(4); let m = Integer::from(13); let power = n.secure_pow_mod(&e, &m); assert_eq!(power, 9);
pub fn secure_pow_mod_mut(&mut self, exponent: &Self, modulo: &Self)[src]
pub fn secure_pow_mod_mut(&mut self, exponent: &Self, modulo: &Self)Raises a number to the power of exponent modulo modulo,
with resilience to side-channel attacks.
The exponent must be greater than zero, and the modulo must be odd.
This method is intended for cryptographic purposes where resilience to side-channel attacks is desired. The function is designed to take the same time and use the same cache access patterns for same-sized arguments, assuming that the arguments are placed at the same position and the machine state is identical when starting.
Panics
Panics if exponent ≤ 0 or if modulo is even.
Examples
use rug::Integer; // 7 ^ 4 mod 13 = 9 let mut n = Integer::from(7); let e = Integer::from(4); let m = Integer::from(13); n.secure_pow_mod_mut(&e, &m); assert_eq!(n, 9);
pub fn secure_pow_mod_ref<'a>(
&'a self,
exponent: &'a Self,
modulo: &'a Self
) -> SecurePowModIncomplete<'a>[src]
pub fn secure_pow_mod_ref<'a>(
&'a self,
exponent: &'a Self,
modulo: &'a Self
) -> SecurePowModIncomplete<'a>Raises a number to the power of exponent modulo modulo,
with resilience to side-channel attacks.
The exponent must be greater than zero, and the modulo must be odd.
This method is intended for cryptographic purposes where resilience to side-channel attacks is desired. The function is designed to take the same time and use the same cache access patterns for same-sized arguments, assuming that the arguments are placed at the same position and the machine state is identical when starting.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Panics
Panics if exponent ≤ 0 or if modulo is even.
Examples
use rug::Integer; // 7 ^ 4 mod 13 = 9 let n = Integer::from(7); let e = Integer::from(4); let m = Integer::from(13); let power = Integer::from(n.secure_pow_mod_ref(&e, &m)); assert_eq!(power, 9);
pub fn u_pow_u(base: u32, exponent: u32) -> UPowUIncomplete[src]
pub fn u_pow_u(base: u32, exponent: u32) -> UPowUIncompleteRaises base to the power of exponent.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let p = Integer::u_pow_u(13, 12); let i = Integer::from(p); assert_eq!(i, 13_u64.pow(12));
pub fn i_pow_u(base: i32, exponent: u32) -> IPowUIncomplete[src]
pub fn i_pow_u(base: i32, exponent: u32) -> IPowUIncompleteRaises base to the power of exponent.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let p1 = Integer::i_pow_u(-13, 13); let i1 = Integer::from(p1); assert_eq!(i1, (-13_i64).pow(13)); let p2 = Integer::i_pow_u(13, 13); let i2 = Integer::from(p2); assert_eq!(i2, (13_i64).pow(13));
pub fn root(self, n: u32) -> Self[src]
pub fn root(self, n: u32) -> SelfComputes the nth root and truncates the result.
Panics
Panics if n is even and the value is negative.
Examples
use rug::Integer; let i = Integer::from(1004); let root = i.root(3); assert_eq!(root, 10);
pub fn root_mut(&mut self, n: u32)[src]
pub fn root_mut(&mut self, n: u32)Computes the nth root and truncates the result.
Panics
Panics if n is even and the value is negative.
Examples
use rug::Integer; let mut i = Integer::from(1004); i.root_mut(3); assert_eq!(i, 10);
pub fn root_ref(&self, n: u32) -> RootIncomplete[src]
pub fn root_ref(&self, n: u32) -> RootIncompleteComputes the nth root and truncates the result.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let i = Integer::from(1004); assert_eq!(Integer::from(i.root_ref(3)), 10);
pub fn root_rem(self, remainder: Self, n: u32) -> (Self, Self)[src]
pub fn root_rem(self, remainder: Self, n: u32) -> (Self, Self)Computes the nth root and returns the truncated root and the remainder.
The remainder is the original number minus the truncated root raised to the power of n.
The initial value of remainder is ignored.
Panics
Panics if n is even and the value is negative.
Examples
use rug::Integer; let i = Integer::from(1004); let (root, rem) = i.root_rem(Integer::new(), 3); assert_eq!(root, 10); assert_eq!(rem, 4);
pub fn root_rem_mut(&mut self, remainder: &mut Self, n: u32)[src]
pub fn root_rem_mut(&mut self, remainder: &mut Self, n: u32)Computes the nth root and returns the truncated root and the remainder.
The remainder is the original number minus the truncated root raised to the power of n.
The initial value of remainder is ignored.
Panics
Panics if n is even and the value is negative.
Examples
use rug::Integer; let mut i = Integer::from(1004); let mut rem = Integer::new(); i.root_rem_mut(&mut rem, 3); assert_eq!(i, 10); assert_eq!(rem, 4);
pub fn root_rem_ref(&self, n: u32) -> RootRemIncomplete[src]
pub fn root_rem_ref(&self, n: u32) -> RootRemIncompleteComputes the nth root and returns the truncated root and the remainder.
The remainder is the original number minus the truncated root raised to the power of n.
Assign<Src> for (Integer, Integer),
Assign<Src> for (&mut Integer, &mut Integer)
and From<Src> for (Integer, Integer) are
implemented with the returned
incomplete-computation value as Src.
Examples
use rug::{Assign, Integer}; let i = Integer::from(1004); let mut root = Integer::new(); let mut rem = Integer::new(); let r = i.root_rem_ref(3); (&mut root, &mut rem).assign(r); assert_eq!(root, 10); assert_eq!(rem, 4); let r = i.root_rem_ref(3); let (other_root, other_rem) = <(Integer, Integer)>::from(r); assert_eq!(other_root, 10); assert_eq!(other_rem, 4);
pub fn square(self) -> Self[src]
pub fn square(self) -> SelfComputes the square.
Examples
use rug::Integer; let i = Integer::from(13); let square = i.square(); assert_eq!(square, 169);
pub fn square_mut(&mut self)[src]
pub fn square_mut(&mut self)Computes the square.
Examples
use rug::Integer; let mut i = Integer::from(13); i.square_mut(); assert_eq!(i, 169);
pub fn square_ref(&self) -> SquareIncomplete[src]
pub fn square_ref(&self) -> SquareIncompleteComputes the square.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let i = Integer::from(13); assert_eq!(Integer::from(i.square_ref()), 169);
pub fn sqrt(self) -> Self[src]
pub fn sqrt(self) -> SelfComputes the square root and truncates the result.
Panics
Panics if the value is negative.
Examples
use rug::Integer; let i = Integer::from(104); let sqrt = i.sqrt(); assert_eq!(sqrt, 10);
pub fn sqrt_mut(&mut self)[src]
pub fn sqrt_mut(&mut self)Computes the square root and truncates the result.
Panics
Panics if the value is negative.
Examples
use rug::Integer; let mut i = Integer::from(104); i.sqrt_mut(); assert_eq!(i, 10);
pub fn sqrt_ref(&self) -> SqrtIncomplete[src]
pub fn sqrt_ref(&self) -> SqrtIncompleteComputes the square root and truncates the result.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let i = Integer::from(104); assert_eq!(Integer::from(i.sqrt_ref()), 10);
pub fn sqrt_rem(self, remainder: Self) -> (Self, Self)[src]
pub fn sqrt_rem(self, remainder: Self) -> (Self, Self)Computes the square root and the remainder.
The remainder is the original number minus the truncated root squared.
The initial value of remainder is ignored.
Panics
Panics if the value is negative.
Examples
use rug::Integer; let i = Integer::from(104); let (sqrt, rem) = i.sqrt_rem(Integer::new()); assert_eq!(sqrt, 10); assert_eq!(rem, 4);
pub fn sqrt_rem_mut(&mut self, remainder: &mut Self)[src]
pub fn sqrt_rem_mut(&mut self, remainder: &mut Self)Computes the square root and the remainder.
The remainder is the original number minus the truncated root squared.
The initial value of remainder is ignored.
Panics
Panics if the value is negative.
Examples
use rug::Integer; let mut i = Integer::from(104); let mut rem = Integer::new(); i.sqrt_rem_mut(&mut rem); assert_eq!(i, 10); assert_eq!(rem, 4);
pub fn sqrt_rem_ref(&self) -> SqrtRemIncomplete[src]
pub fn sqrt_rem_ref(&self) -> SqrtRemIncompleteComputes the square root and the remainder.
The remainder is the original number minus the truncated root squared.
Assign<Src> for (Integer, Integer),
Assign<Src> for (&mut Integer, &mut Integer)
and From<Src> for (Integer, Integer) are
implemented with the returned
incomplete-computation value as Src.
Examples
use rug::{Assign, Integer}; let i = Integer::from(104); let mut sqrt = Integer::new(); let mut rem = Integer::new(); let r = i.sqrt_rem_ref(); (&mut sqrt, &mut rem).assign(r); assert_eq!(sqrt, 10); assert_eq!(rem, 4); let r = i.sqrt_rem_ref(); let (other_sqrt, other_rem) = <(Integer, Integer)>::from(r); assert_eq!(other_sqrt, 10); assert_eq!(other_rem, 4);
pub fn is_probably_prime(&self, reps: u32) -> IsPrime[src]
pub fn is_probably_prime(&self, reps: u32) -> IsPrimeDetermines wheter a number is prime using some trial
divisions, then reps Miller-Rabin probabilistic primality
tests.
Examples
use rug::integer::IsPrime; use rug::Integer; let no = Integer::from(163 * 4003); assert_eq!(no.is_probably_prime(15), IsPrime::No); let yes = Integer::from(21_751); assert_eq!(yes.is_probably_prime(15), IsPrime::Yes); // 817_504_243 is actually a prime. let probably = Integer::from(817_504_243); assert_eq!(probably.is_probably_prime(15), IsPrime::Probably);
pub fn next_prime(self) -> Self[src]
pub fn next_prime(self) -> SelfIdentifies primes using a probabilistic algorithm; the chance of a composite passing will be extremely small.
Examples
use rug::Integer; let i = Integer::from(800_000_000); let prime = i.next_prime(); assert_eq!(prime, 800_000_011);
pub fn next_prime_mut(&mut self)[src]
pub fn next_prime_mut(&mut self)Identifies primes using a probabilistic algorithm; the chance of a composite passing will be extremely small.
Examples
use rug::Integer; let mut i = Integer::from(800_000_000); i.next_prime_mut(); assert_eq!(i, 800_000_011);
pub fn next_prime_ref(&self) -> NextPrimeIncomplete[src]
pub fn next_prime_ref(&self) -> NextPrimeIncompleteIdentifies primes using a probabilistic algorithm; the chance of a composite passing will be extremely small.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let i = Integer::from(800_000_000); let r = i.next_prime_ref(); let prime = Integer::from(r); assert_eq!(prime, 800_000_011);
pub fn gcd(self, other: &Self) -> Self[src]
pub fn gcd(self, other: &Self) -> SelfFinds the greatest common divisor.
The result is always positive except when both inputs are zero.
Examples
use rug::{Assign, Integer}; let a = Integer::new(); let mut b = Integer::new(); // gcd of 0, 0 is 0 let gcd1 = a.gcd(&b); assert_eq!(gcd1, 0); b.assign(10); // gcd of 0, 10 is 10 let gcd2 = gcd1.gcd(&b); assert_eq!(gcd2, 10); b.assign(25); // gcd of 10, 25 is 5 let gcd3 = gcd2.gcd(&b); assert_eq!(gcd3, 5);
pub fn gcd_mut(&mut self, other: &Self)[src]
pub fn gcd_mut(&mut self, other: &Self)Finds the greatest common divisor.
The result is always positive except when both inputs are zero.
Examples
use rug::{Assign, Integer}; let mut a = Integer::new(); let mut b = Integer::new(); // gcd of 0, 0 is 0 a.gcd_mut(&b); assert_eq!(a, 0); b.assign(10); // gcd of 0, 10 is 10 a.gcd_mut(&b); assert_eq!(a, 10); b.assign(25); // gcd of 10, 25 is 5 a.gcd_mut(&b); assert_eq!(a, 5);
pub fn gcd_ref<'a>(&'a self, other: &'a Self) -> GcdIncomplete[src]
pub fn gcd_ref<'a>(&'a self, other: &'a Self) -> GcdIncompleteFinds the greatest common divisor.
The result is always positive except when both inputs are zero.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let a = Integer::from(100); let b = Integer::from(125); let r = a.gcd_ref(&b); // gcd of 100, 125 is 25 assert_eq!(Integer::from(r), 25);
pub fn gcd_cofactors(self, other: Self, rop: Self) -> (Self, Self, Self)[src]
pub fn gcd_cofactors(self, other: Self, rop: Self) -> (Self, Self, Self)Finds the greatest common divisor (GCD) of the two inputs
(self and other), and two cofactors to obtain the GCD
from the two inputs.
The GCD is always positive except when both inputs are zero. If the inputs are a and b, then the GCD is g and the cofactors are s and t such that
a × s + b × t = g
The values s and t are chosen such that normally, |s| < |b| / (2g) and |t| < |a| / (2g), and these relations define s and t uniquely. There are a few exceptional cases:
- If |a| = |b|, then s = 0, t = sgn(b).
- Otherwise, if b = 0 or |b| = 2g, then s = sgn(a), and if a = 0 or |a| = 2g, then t = sgn(b).
Examples
use rug::Integer; let a = Integer::from(4); let b = Integer::from(6); let (g, s, t) = a.gcd_cofactors(b, Integer::new()); assert_eq!(g, 2); assert_eq!(s, -1); assert_eq!(t, 1);
pub fn gcd_cofactors_mut(&mut self, other: &mut Self, rop: &mut Self)[src]
pub fn gcd_cofactors_mut(&mut self, other: &mut Self, rop: &mut Self)Finds the greatest common divisor (GCD) of the two inputs
(self and other), and two cofactors to obtain the GCD
from the two inputs.
The GCD is stored in self, and the two cofactors are
stored in other and rop.
The GCD is always positive except when both inputs are zero. If the inputs are a and b, then the GCD is g and the cofactors are s and t such that
a × s + b × t = g
The values s and t are chosen such that normally, |s| < |b| / (2g) and |t| < |a| / (2g), and these relations define s and t uniquely. There are a few exceptional cases:
- If |a| = |b|, then s = 0, t = sgn(b).
- Otherwise, if b = 0 or |b| = 2g, then s = sgn(a), and if a = 0 or |a| = 2g, then t = sgn(b).
Examples
use rug::Integer; let mut a_g = Integer::from(4); let mut b_s = Integer::from(6); let mut t = Integer::new(); a_g.gcd_cofactors_mut(&mut b_s, &mut t); assert_eq!(a_g, 2); assert_eq!(b_s, -1); assert_eq!(t, 1);
pub fn gcd_cofactors_ref<'a>(&'a self, other: &'a Self) -> GcdIncomplete[src]
pub fn gcd_cofactors_ref<'a>(&'a self, other: &'a Self) -> GcdIncompleteFinds the greatest common divisor (GCD) of the two inputs
(self and other), and two cofactors to obtain the GCD
from the two inputs.
Assign<Src> for (Integer, Integer, Integer),
Assign<Src> for (&mut Integer, &mut Integer, &mut Integer)
and From<Src> for (Integer, Integer, Integer)
are implemented with the returned
incomplete-computation value as Src.
In the case that only one of the two cofactors is
required, Assign<Src> for (Integer, Integer),
Assign<Src> for (&mut Integer, &mut Integer) and
From<Src> for (Integer, Integer) are also
implemented with the returned
incomplete-computation value as Src.
The GCD is always positive except when both inputs are zero. If the inputs are a and b, then the GCD is g and the cofactors are s and t such that
a × s + b × t = g
The values s and t are chosen such that normally, |s| < |b| / (2g) and |t| < |a| / (2g), and these relations define s and t uniquely. There are a few exceptional cases:
- If |a| = |b|, then s = 0, t = sgn(b).
- Otherwise, if b = 0 or |b| = 2g, then s = sgn(a), and if a = 0 or |a| = 2g, then t = sgn(b).
Examples
use rug::{Assign, Integer}; let a = Integer::from(4); let b = Integer::from(6); let r = a.gcd_cofactors_ref(&b); let mut g = Integer::new(); let mut s = Integer::new(); let mut t = Integer::new(); (&mut g, &mut s, &mut t).assign(r); assert_eq!(a, 4); assert_eq!(b, 6); assert_eq!(g, 2); assert_eq!(s, -1); assert_eq!(t, 1);
In the case that only one of the two cofactors is required, this can be achieved as follows:
use rug::{Assign, Integer}; let a = Integer::from(4); let b = Integer::from(6); // no t required let (mut g1, mut s1) = (Integer::new(), Integer::new()); (&mut g1, &mut s1).assign(a.gcd_cofactors_ref(&b)); assert_eq!(g1, 2); assert_eq!(s1, -1); // no s required let (mut g2, mut t2) = (Integer::new(), Integer::new()); (&mut g2, &mut t2).assign(b.gcd_cofactors_ref(&a)); assert_eq!(g2, 2); assert_eq!(t2, 1);
pub fn lcm(self, other: &Self) -> Self[src]
pub fn lcm(self, other: &Self) -> SelfFinds the least common multiple.
The result is always positive except when one or both inputs are zero.
Examples
use rug::{Assign, Integer}; let a = Integer::from(10); let mut b = Integer::from(25); // lcm of 10, 25 is 50 let lcm1 = a.lcm(&b); assert_eq!(lcm1, 50); b.assign(0); // lcm of 50, 0 is 0 let lcm2 = lcm1.lcm(&b); assert_eq!(lcm2, 0);
pub fn lcm_mut(&mut self, other: &Self)[src]
pub fn lcm_mut(&mut self, other: &Self)Finds the least common multiple.
The result is always positive except when one or both inputs are zero.
Examples
use rug::{Assign, Integer}; let mut a = Integer::from(10); let mut b = Integer::from(25); // lcm of 10, 25 is 50 a.lcm_mut(&b); assert_eq!(a, 50); b.assign(0); // lcm of 50, 0 is 0 a.lcm_mut(&b); assert_eq!(a, 0);
pub fn lcm_ref<'a>(&'a self, other: &'a Self) -> LcmIncomplete[src]
pub fn lcm_ref<'a>(&'a self, other: &'a Self) -> LcmIncompleteFinds the least common multiple.
The result is always positive except when one or both inputs are zero.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; let a = Integer::from(100); let b = Integer::from(125); let r = a.lcm_ref(&b); // lcm of 100, 125 is 500 assert_eq!(Integer::from(r), 500);
pub fn jacobi(&self, n: &Self) -> i32[src]
pub fn jacobi(&self, n: &Self) -> i32Calculates the Jacobi symbol (self/n).
Examples
use rug::{Assign, Integer}; let m = Integer::from(10); let mut n = Integer::from(13); assert_eq!(m.jacobi(&n), 1); n.assign(15); assert_eq!(m.jacobi(&n), 0); n.assign(17); assert_eq!(m.jacobi(&n), -1);
pub fn legendre(&self, p: &Self) -> i32[src]
pub fn legendre(&self, p: &Self) -> i32Calculates the Legendre symbol (self/p).
Examples
use rug::{Assign, Integer}; let a = Integer::from(5); let mut p = Integer::from(7); assert_eq!(a.legendre(&p), -1); p.assign(11); assert_eq!(a.legendre(&p), 1);
pub fn kronecker(&self, n: &Self) -> i32[src]
pub fn kronecker(&self, n: &Self) -> i32Calculates the Jacobi symbol (self/n) with the
Kronecker extension.
Examples
use rug::{Assign, Integer}; let k = Integer::from(3); let mut n = Integer::from(16); assert_eq!(k.kronecker(&n), 1); n.assign(17); assert_eq!(k.kronecker(&n), -1); n.assign(18); assert_eq!(k.kronecker(&n), 0);
pub fn remove_factor(self, factor: &Self) -> (Self, u32)[src]
pub fn remove_factor(self, factor: &Self) -> (Self, u32)Removes all occurrences of factor, and returns the number of
occurrences removed.
Examples
use rug::Integer; let mut i = Integer::from(Integer::u_pow_u(13, 50)); i *= 1000; let (remove, count) = i.remove_factor(&Integer::from(13)); assert_eq!(remove, 1000); assert_eq!(count, 50);
pub fn remove_factor_mut(&mut self, factor: &Self) -> u32[src]
pub fn remove_factor_mut(&mut self, factor: &Self) -> u32Removes all occurrences of factor, and returns the number of
occurrences removed.
Examples
use rug::Integer; let mut i = Integer::from(Integer::u_pow_u(13, 50)); i *= 1000; let count = i.remove_factor_mut(&Integer::from(13)); assert_eq!(i, 1000); assert_eq!(count, 50);
pub fn remove_factor_ref<'a>(
&'a self,
factor: &'a Self
) -> RemoveFactorIncomplete<'a>[src]
pub fn remove_factor_ref<'a>(
&'a self,
factor: &'a Self
) -> RemoveFactorIncomplete<'a>Removes all occurrences of factor, and counts the number of
occurrences removed.
Examples
use rug::{Assign, Integer}; let mut i = Integer::from(Integer::u_pow_u(13, 50)); i *= 1000; let factor = Integer::from(13); let r = i.remove_factor_ref(&factor); let (mut j, mut count) = (Integer::new(), 0); (&mut j, &mut count).assign(r); assert_eq!(count, 50); assert_eq!(j, 1000);
pub fn factorial(n: u32) -> FactorialIncomplete[src]
pub fn factorial(n: u32) -> FactorialIncompleteComputes the factorial of n.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; // 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 let f = Integer::factorial(10); let i = Integer::from(f); assert_eq!(i, 3628800);
pub fn factorial_2(n: u32) -> Factorial2Incomplete[src]
pub fn factorial_2(n: u32) -> Factorial2IncompleteComputes the double factorial of n.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; // 10 * 8 * 6 * 4 * 2 let f = Integer::factorial_2(10); let i = Integer::from(f); assert_eq!(i, 3840);
pub fn factorial_m(n: u32, m: u32) -> FactorialMIncomplete[src]
pub fn factorial_m(n: u32, m: u32) -> FactorialMIncompleteComputes the m-multi factorial of n.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; // 10 * 7 * 4 * 1 let f = Integer::factorial_m(10, 3); let i = Integer::from(f); assert_eq!(i, 280);
pub fn primorial(n: u32) -> PrimorialIncomplete[src]
pub fn primorial(n: u32) -> PrimorialIncompleteComputes the primorial of n.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; // 7 * 5 * 3 * 2 let p = Integer::primorial(10); let i = Integer::from(p); assert_eq!(i, 210);
pub fn binomial(self, k: u32) -> Self[src]
pub fn binomial(self, k: u32) -> SelfComputes the binomial coefficient over k.
Examples
use rug::Integer; // 7 choose 2 is 21 let i = Integer::from(7); let bin = i.binomial(2); assert_eq!(bin, 21);
pub fn binomial_mut(&mut self, k: u32)[src]
pub fn binomial_mut(&mut self, k: u32)Computes the binomial coefficient over k.
Examples
use rug::Integer; // 7 choose 2 is 21 let mut i = Integer::from(7); i.binomial_mut(2); assert_eq!(i, 21);
pub fn binomial_ref(&self, k: u32) -> BinomialIncomplete[src]
pub fn binomial_ref(&self, k: u32) -> BinomialIncompleteComputes the binomial coefficient over k.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; // 7 choose 2 is 21 let i = Integer::from(7); assert_eq!(Integer::from(i.binomial_ref(2)), 21);
pub fn binomial_u(n: u32, k: u32) -> BinomialUIncomplete[src]
pub fn binomial_u(n: u32, k: u32) -> BinomialUIncompleteComputes the binomial coefficient n over k.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::Integer; // 7 choose 2 is 21 let b = Integer::binomial_u(7, 2); let i = Integer::from(b); assert_eq!(i, 21);
pub fn fibonacci(n: u32) -> FibonacciIncomplete[src]
pub fn fibonacci(n: u32) -> FibonacciIncompleteComputes the Fibonacci number.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
This function is meant for an isolated number. If a
sequence of Fibonacci numbers is required, the first two
values of the sequence should be computed with the
fibonacci_2 method, then iterations should be used.
Examples
use rug::Integer; let f = Integer::fibonacci(12); let i = Integer::from(f); assert_eq!(i, 144);
pub fn fibonacci_2(n: u32) -> FibonacciIncomplete[src]
pub fn fibonacci_2(n: u32) -> FibonacciIncompleteComputes a Fibonacci number, and the previous Fibonacci number.
Assign<Src> for (Integer, Integer),
Assign<Src> for (&mut Integer, &mut Integer)
and From<Src> for (Integer, Integer) are
implemented with the returned
incomplete-computation value as Src.
This function is meant to calculate isolated numbers. If a sequence of Fibonacci numbers is required, the first two values of the sequence should be computed with this function, then iterations should be used.
Examples
use rug::{Assign, Integer}; let f = Integer::fibonacci_2(12); let mut pair = <(Integer, Integer)>::from(f); assert_eq!(pair.0, 144); assert_eq!(pair.1, 89); // Fibonacci number F[-1] is 1 pair.assign(Integer::fibonacci_2(0)); assert_eq!(pair.0, 0); assert_eq!(pair.1, 1);
pub fn lucas(n: u32) -> LucasIncomplete[src]
pub fn lucas(n: u32) -> LucasIncompleteComputes the Lucas number.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
This function is meant for an isolated number. If a
sequence of Lucas numbers is required, the first two
values of the sequence should be computed with the
lucas_2 method, then iterations should be used.
Examples
use rug::Integer; let l = Integer::lucas(12); let i = Integer::from(l); assert_eq!(i, 322);
pub fn lucas_2(n: u32) -> LucasIncomplete[src]
pub fn lucas_2(n: u32) -> LucasIncompleteComputes a Lucas number, and the previous Lucas number.
Assign<Src> for (Integer, Integer),
Assign<Src> for (&mut Integer, &mut Integer)
and From<Src> for (Integer, Integer) are
implemented with the returned
incomplete-computation value as Src.
This function is meant to calculate isolated numbers. If a sequence of Lucas numbers is required, the first two values of the sequence should be computed with this function, then iterations should be used.
Examples
use rug::{Assign, Integer}; let l = Integer::lucas_2(12); let mut pair = <(Integer, Integer)>::from(l); assert_eq!(pair.0, 322); assert_eq!(pair.1, 199); pair.assign(Integer::lucas_2(0)); assert_eq!(pair.0, 2); assert_eq!(pair.1, -1);
pub fn random_bits<'a, 'b>(
bits: u32,
rng: &'a mut RandState<'b>
) -> RandomBitsIncomplete<'a, 'b> where
'b: 'a, [src]
pub fn random_bits<'a, 'b>(
bits: u32,
rng: &'a mut RandState<'b>
) -> RandomBitsIncomplete<'a, 'b> where
'b: 'a, Generates a random number with a specified maximum number of bits.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Examples
use rug::rand::RandState; use rug::{Assign, Integer}; let mut rand = RandState::new(); let mut i = Integer::from(Integer::random_bits(0, &mut rand)); assert_eq!(i, 0); i.assign(Integer::random_bits(80, &mut rand)); assert!(i.significant_bits() <= 80);
pub fn random_below(self, rng: &mut RandState) -> Self[src]
pub fn random_below(self, rng: &mut RandState) -> SelfGenerates a non-negative random number below the given boundary value.
Panics
Panics if the boundary value is less than or equal to zero.
Examples
use rug::rand::RandState; use rug::Integer; let mut rand = RandState::new(); let i = Integer::from(15); let below = i.random_below(&mut rand); println!("0 ≤ {} < 15", below); assert!(below < 15);
pub fn random_below_mut(&mut self, rng: &mut RandState)[src]
pub fn random_below_mut(&mut self, rng: &mut RandState)Generates a non-negative random number below the given boundary value.
Panics
Panics if the boundary value is less than or equal to zero.
Examples
use rug::rand::RandState; use rug::Integer; let mut rand = RandState::new(); let mut i = Integer::from(15); i.random_below_mut(&mut rand); println!("0 ≤ {} < 15", i); assert!(i < 15);
pub fn random_below_ref<'a, 'b>(
&'a self,
rng: &'a mut RandState<'b>
) -> RandomBelowIncomplete<'a, 'b> where
'b: 'a, [src]
pub fn random_below_ref<'a, 'b>(
&'a self,
rng: &'a mut RandState<'b>
) -> RandomBelowIncomplete<'a, 'b> where
'b: 'a, Generates a non-negative random number below the given boundary value.
Assign<Src> for Integer and
From<Src> for Integer are implemented with the
returned incomplete-computation value as Src.
Panics
Panics if the boundary value is less than or equal to zero.
Examples
use rug::rand::RandState; use rug::Integer; let mut rand = RandState::new(); let bound = Integer::from(15); let i = Integer::from(bound.random_below_ref(&mut rand)); println!("0 ≤ {} < {}", i, bound); assert!(i < bound);
Trait Implementations
impl Neg for Integer[src]
impl Neg for Integertype Output = Integer
The resulting type after applying the - operator.
fn neg(self) -> Integer[src]
fn neg(self) -> IntegerPerforms the unary - operation.
impl NegAssign for Integer[src]
impl NegAssign for Integerfn neg_assign(&mut self)[src]
fn neg_assign(&mut self)Peforms the negation. Read more
impl<'a> Neg for &'a Integer[src]
impl<'a> Neg for &'a Integertype Output = NegIncomplete<'a>
The resulting type after applying the - operator.
fn neg(self) -> NegIncomplete<'a>[src]
fn neg(self) -> NegIncomplete<'a>Performs the unary - operation.
impl Add<Integer> for Integer[src]
impl Add<Integer> for Integertype Output = Integer
The resulting type after applying the + operator.
fn add(self, rhs: Integer) -> Integer[src]
fn add(self, rhs: Integer) -> IntegerPerforms the + operation.
impl<'a> Add<&'a Integer> for Integer[src]
impl<'a> Add<&'a Integer> for Integertype Output = Integer
The resulting type after applying the + operator.
fn add(self, rhs: &Integer) -> Integer[src]
fn add(self, rhs: &Integer) -> IntegerPerforms the + operation.
impl<'a> Add<Integer> for &'a Integer[src]
impl<'a> Add<Integer> for &'a Integertype Output = Integer
The resulting type after applying the + operator.
fn add(self, rhs: Integer) -> Integer[src]
fn add(self, rhs: Integer) -> IntegerPerforms the + operation.
impl<'a> Add<&'a Integer> for &'a Integer[src]
impl<'a> Add<&'a Integer> for &'a Integertype Output = AddIncomplete<'a>
The resulting type after applying the + operator.
fn add(self, rhs: &'a Integer) -> AddIncomplete[src]
fn add(self, rhs: &'a Integer) -> AddIncompletePerforms the + operation.
impl AddAssign<Integer> for Integer[src]
impl AddAssign<Integer> for Integerfn add_assign(&mut self, rhs: Integer)[src]
fn add_assign(&mut self, rhs: Integer)Performs the += operation.
impl<'a> AddAssign<&'a Integer> for Integer[src]
impl<'a> AddAssign<&'a Integer> for Integerfn add_assign(&mut self, rhs: &Integer)[src]
fn add_assign(&mut self, rhs: &Integer)Performs the += operation.
impl AddFrom<Integer> for Integer[src]
impl AddFrom<Integer> for Integerimpl<'a> AddFrom<&'a Integer> for Integer[src]
impl<'a> AddFrom<&'a Integer> for Integerimpl Sub<Integer> for Integer[src]
impl Sub<Integer> for Integertype Output = Integer
The resulting type after applying the - operator.
fn sub(self, rhs: Integer) -> Integer[src]
fn sub(self, rhs: Integer) -> IntegerPerforms the - operation.
impl<'a> Sub<&'a Integer> for Integer[src]
impl<'a> Sub<&'a Integer> for Integertype Output = Integer
The resulting type after applying the - operator.
fn sub(self, rhs: &Integer) -> Integer[src]
fn sub(self, rhs: &Integer) -> IntegerPerforms the - operation.
impl<'a> Sub<Integer> for &'a Integer[src]
impl<'a> Sub<Integer> for &'a Integertype Output = Integer
The resulting type after applying the - operator.
fn sub(self, rhs: Integer) -> Integer[src]
fn sub(self, rhs: Integer) -> IntegerPerforms the - operation.
impl<'a> Sub<&'a Integer> for &'a Integer[src]
impl<'a> Sub<&'a Integer> for &'a Integertype Output = SubIncomplete<'a>
The resulting type after applying the - operator.
fn sub(self, rhs: &'a Integer) -> SubIncomplete[src]
fn sub(self, rhs: &'a Integer) -> SubIncompletePerforms the - operation.
impl SubAssign<Integer> for Integer[src]
impl SubAssign<Integer> for Integerfn sub_assign(&mut self, rhs: Integer)[src]
fn sub_assign(&mut self, rhs: Integer)Performs the -= operation.
impl<'a> SubAssign<&'a Integer> for Integer[src]
impl<'a> SubAssign<&'a Integer> for Integerfn sub_assign(&mut self, rhs: &Integer)[src]
fn sub_assign(&mut self, rhs: &Integer)Performs the -= operation.
impl SubFrom<Integer> for Integer[src]
impl SubFrom<Integer> for Integerimpl<'a> SubFrom<&'a Integer> for Integer[src]
impl<'a> SubFrom<&'a Integer> for Integerimpl Mul<Integer> for Integer[src]
impl Mul<Integer> for Integertype Output = Integer
The resulting type after applying the * operator.
fn mul(self, rhs: Integer) -> Integer[src]
fn mul(self, rhs: Integer) -> IntegerPerforms the * operation.
impl<'a> Mul<&'a Integer> for Integer[src]
impl<'a> Mul<&'a Integer> for Integertype Output = Integer
The resulting type after applying the * operator.
fn mul(self, rhs: &Integer) -> Integer[src]
fn mul(self, rhs: &Integer) -> IntegerPerforms the * operation.
impl<'a> Mul<Integer> for &'a Integer[src]
impl<'a> Mul<Integer> for &'a Integertype Output = Integer
The resulting type after applying the * operator.
fn mul(self, rhs: Integer) -> Integer[src]
fn mul(self, rhs: Integer) -> IntegerPerforms the * operation.
impl<'a> Mul<&'a Integer> for &'a Integer[src]
impl<'a> Mul<&'a Integer> for &'a Integertype Output = MulIncomplete<'a>
The resulting type after applying the * operator.
fn mul(self, rhs: &'a Integer) -> MulIncomplete[src]
fn mul(self, rhs: &'a Integer) -> MulIncompletePerforms the * operation.
impl MulAssign<Integer> for Integer[src]
impl MulAssign<Integer> for Integerfn mul_assign(&mut self, rhs: Integer)[src]
fn mul_assign(&mut self, rhs: Integer)Performs the *= operation.
impl<'a> MulAssign<&'a Integer> for Integer[src]
impl<'a> MulAssign<&'a Integer> for Integerfn mul_assign(&mut self, rhs: &Integer)[src]
fn mul_assign(&mut self, rhs: &Integer)Performs the *= operation.
impl MulFrom<Integer> for Integer[src]
impl MulFrom<Integer> for Integerimpl<'a> MulFrom<&'a Integer> for Integer[src]
impl<'a> MulFrom<&'a Integer> for Integerimpl Div<Integer> for Integer[src]
impl Div<Integer> for Integertype Output = Integer
The resulting type after applying the / operator.
fn div(self, rhs: Integer) -> Integer[src]
fn div(self, rhs: Integer) -> IntegerPerforms the / operation.
impl<'a> Div<&'a Integer> for Integer[src]
impl<'a> Div<&'a Integer> for Integertype Output = Integer
The resulting type after applying the / operator.
fn div(self, rhs: &Integer) -> Integer[src]
fn div(self, rhs: &Integer) -> IntegerPerforms the / operation.
impl<'a> Div<Integer> for &'a Integer[src]
impl<'a> Div<Integer> for &'a Integertype Output = Integer
The resulting type after applying the / operator.
fn div(self, rhs: Integer) -> Integer[src]
fn div(self, rhs: Integer) -> IntegerPerforms the / operation.
impl<'a> Div<&'a Integer> for &'a Integer[src]
impl<'a> Div<&'a Integer> for &'a Integertype Output = DivIncomplete<'a>
The resulting type after applying the / operator.
fn div(self, rhs: &'a Integer) -> DivIncomplete[src]
fn div(self, rhs: &'a Integer) -> DivIncompletePerforms the / operation.
impl DivAssign<Integer> for Integer[src]
impl DivAssign<Integer> for Integerfn div_assign(&mut self, rhs: Integer)[src]
fn div_assign(&mut self, rhs: Integer)Performs the /= operation.
impl<'a> DivAssign<&'a Integer> for Integer[src]
impl<'a> DivAssign<&'a Integer> for Integerfn div_assign(&mut self, rhs: &Integer)[src]
fn div_assign(&mut self, rhs: &Integer)Performs the /= operation.
impl DivFrom<Integer> for Integer[src]
impl DivFrom<Integer> for Integerimpl<'a> DivFrom<&'a Integer> for Integer[src]
impl<'a> DivFrom<&'a Integer> for Integerimpl Rem<Integer> for Integer[src]
impl Rem<Integer> for Integertype Output = Integer
The resulting type after applying the % operator.
fn rem(self, rhs: Integer) -> Integer[src]
fn rem(self, rhs: Integer) -> IntegerPerforms the % operation.
impl<'a> Rem<&'a Integer> for Integer[src]
impl<'a> Rem<&'a Integer> for Integertype Output = Integer
The resulting type after applying the % operator.
fn rem(self, rhs: &Integer) -> Integer[src]
fn rem(self, rhs: &Integer) -> IntegerPerforms the % operation.
impl<'a> Rem<Integer> for &'a Integer[src]
impl<'a> Rem<Integer> for &'a Integertype Output = Integer
The resulting type after applying the % operator.
fn rem(self, rhs: Integer) -> Integer[src]
fn rem(self, rhs: Integer) -> IntegerPerforms the % operation.
impl<'a> Rem<&'a Integer> for &'a Integer[src]
impl<'a> Rem<&'a Integer> for &'a Integertype Output = RemIncomplete<'a>
The resulting type after applying the % operator.
fn rem(self, rhs: &'a Integer) -> RemIncomplete[src]
fn rem(self, rhs: &'a Integer) -> RemIncompletePerforms the % operation.
impl RemAssign<Integer> for Integer[src]
impl RemAssign<Integer> for Integerfn rem_assign(&mut self, rhs: Integer)[src]
fn rem_assign(&mut self, rhs: Integer)Performs the %= operation.
impl<'a> RemAssign<&'a Integer> for Integer[src]
impl<'a> RemAssign<&'a Integer> for Integerfn rem_assign(&mut self, rhs: &Integer)[src]
fn rem_assign(&mut self, rhs: &Integer)Performs the %= operation.
impl RemFrom<Integer> for Integer[src]
impl RemFrom<Integer> for Integerimpl<'a> RemFrom<&'a Integer> for Integer[src]
impl<'a> RemFrom<&'a Integer> for Integerimpl Not for Integer[src]
impl Not for Integertype Output = Integer
The resulting type after applying the ! operator.
fn not(self) -> Integer[src]
fn not(self) -> IntegerPerforms the unary ! operation.
impl NotAssign for Integer[src]
impl NotAssign for Integerfn not_assign(&mut self)[src]
fn not_assign(&mut self)Peforms the complement. Read more
impl<'a> Not for &'a Integer[src]
impl<'a> Not for &'a Integertype Output = NotIncomplete<'a>
The resulting type after applying the ! operator.
fn not(self) -> NotIncomplete<'a>[src]
fn not(self) -> NotIncomplete<'a>Performs the unary ! operation.
impl BitAnd<Integer> for Integer[src]
impl BitAnd<Integer> for Integertype Output = Integer
The resulting type after applying the & operator.
fn bitand(self, rhs: Integer) -> Integer[src]
fn bitand(self, rhs: Integer) -> IntegerPerforms the & operation.
impl<'a> BitAnd<&'a Integer> for Integer[src]
impl<'a> BitAnd<&'a Integer> for Integertype Output = Integer
The resulting type after applying the & operator.
fn bitand(self, rhs: &Integer) -> Integer[src]
fn bitand(self, rhs: &Integer) -> IntegerPerforms the & operation.
impl<'a> BitAnd<Integer> for &'a Integer[src]
impl<'a> BitAnd<Integer> for &'a Integertype Output = Integer
The resulting type after applying the & operator.
fn bitand(self, rhs: Integer) -> Integer[src]
fn bitand(self, rhs: Integer) -> IntegerPerforms the & operation.
impl<'a> BitAnd<&'a Integer> for &'a Integer[src]
impl<'a> BitAnd<&'a Integer> for &'a Integertype Output = BitAndIncomplete<'a>
The resulting type after applying the & operator.
fn bitand(self, rhs: &'a Integer) -> BitAndIncomplete[src]
fn bitand(self, rhs: &'a Integer) -> BitAndIncompletePerforms the & operation.
impl BitAndAssign<Integer> for Integer[src]
impl BitAndAssign<Integer> for Integerfn bitand_assign(&mut self, rhs: Integer)[src]
fn bitand_assign(&mut self, rhs: Integer)Performs the &= operation.
impl<'a> BitAndAssign<&'a Integer> for Integer[src]
impl<'a> BitAndAssign<&'a Integer> for Integerfn bitand_assign(&mut self, rhs: &Integer)[src]
fn bitand_assign(&mut self, rhs: &Integer)Performs the &= operation.
impl BitAndFrom<Integer> for Integer[src]
impl BitAndFrom<Integer> for Integerfn bitand_from(&mut self, lhs: Integer)[src]
fn bitand_from(&mut self, lhs: Integer)Peforms the AND operation. Read more
impl<'a> BitAndFrom<&'a Integer> for Integer[src]
impl<'a> BitAndFrom<&'a Integer> for Integerfn bitand_from(&mut self, lhs: &Integer)[src]
fn bitand_from(&mut self, lhs: &Integer)Peforms the AND operation. Read more
impl BitOr<Integer> for Integer[src]
impl BitOr<Integer> for Integertype Output = Integer
The resulting type after applying the | operator.
fn bitor(self, rhs: Integer) -> Integer[src]
fn bitor(self, rhs: Integer) -> IntegerPerforms the | operation.
impl<'a> BitOr<&'a Integer> for Integer[src]
impl<'a> BitOr<&'a Integer> for Integertype Output = Integer
The resulting type after applying the | operator.
fn bitor(self, rhs: &Integer) -> Integer[src]
fn bitor(self, rhs: &Integer) -> IntegerPerforms the | operation.
impl<'a> BitOr<Integer> for &'a Integer[src]
impl<'a> BitOr<Integer> for &'a Integertype Output = Integer
The resulting type after applying the | operator.
fn bitor(self, rhs: Integer) -> Integer[src]
fn bitor(self, rhs: Integer) -> IntegerPerforms the | operation.
impl<'a> BitOr<&'a Integer> for &'a Integer[src]
impl<'a> BitOr<&'a Integer> for &'a Integertype Output = BitOrIncomplete<'a>
The resulting type after applying the | operator.
fn bitor(self, rhs: &'a Integer) -> BitOrIncomplete[src]
fn bitor(self, rhs: &'a Integer) -> BitOrIncompletePerforms the | operation.
impl BitOrAssign<Integer> for Integer[src]
impl BitOrAssign<Integer> for Integerfn bitor_assign(&mut self, rhs: Integer)[src]
fn bitor_assign(&mut self, rhs: Integer)Performs the |= operation.
impl<'a> BitOrAssign<&'a Integer> for Integer[src]
impl<'a> BitOrAssign<&'a Integer> for Integerfn bitor_assign(&mut self, rhs: &Integer)[src]
fn bitor_assign(&mut self, rhs: &Integer)Performs the |= operation.
impl BitOrFrom<Integer> for Integer[src]
impl BitOrFrom<Integer> for Integerfn bitor_from(&mut self, lhs: Integer)[src]
fn bitor_from(&mut self, lhs: Integer)Peforms the OR operation. Read more
impl<'a> BitOrFrom<&'a Integer> for Integer[src]
impl<'a> BitOrFrom<&'a Integer> for Integerfn bitor_from(&mut self, lhs: &Integer)[src]
fn bitor_from(&mut self, lhs: &Integer)Peforms the OR operation. Read more
impl BitXor<Integer> for Integer[src]
impl BitXor<Integer> for Integertype Output = Integer
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: Integer) -> Integer[src]
fn bitxor(self, rhs: Integer) -> IntegerPerforms the ^ operation.
impl<'a> BitXor<&'a Integer> for Integer[src]
impl<'a> BitXor<&'a Integer> for Integertype Output = Integer
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: &Integer) -> Integer[src]
fn bitxor(self, rhs: &Integer) -> IntegerPerforms the ^ operation.
impl<'a> BitXor<Integer> for &'a Integer[src]
impl<'a> BitXor<Integer> for &'a Integertype Output = Integer
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: Integer) -> Integer[src]
fn bitxor(self, rhs: Integer) -> IntegerPerforms the ^ operation.
impl<'a> BitXor<&'a Integer> for &'a Integer[src]
impl<'a> BitXor<&'a Integer> for &'a Integertype Output = BitXorIncomplete<'a>
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: &'a Integer) -> BitXorIncomplete[src]
fn bitxor(self, rhs: &'a Integer) -> BitXorIncompletePerforms the ^ operation.
impl BitXorAssign<Integer> for Integer[src]
impl BitXorAssign<Integer> for Integerfn bitxor_assign(&mut self, rhs: Integer)[src]
fn bitxor_assign(&mut self, rhs: Integer)Performs the ^= operation.
impl<'a> BitXorAssign<&'a Integer> for Integer[src]
impl<'a> BitXorAssign<&'a Integer> for Integerfn bitxor_assign(&mut self, rhs: &Integer)[src]
fn bitxor_assign(&mut self, rhs: &Integer)Performs the ^= operation.
impl BitXorFrom<Integer> for Integer[src]
impl BitXorFrom<Integer> for Integerfn bitxor_from(&mut self, lhs: Integer)[src]
fn bitxor_from(&mut self, lhs: Integer)Peforms the XOR operation. Read more
impl<'a> BitXorFrom<&'a Integer> for Integer[src]
impl<'a> BitXorFrom<&'a Integer> for Integerfn bitxor_from(&mut self, lhs: &Integer)[src]
fn bitxor_from(&mut self, lhs: &Integer)Peforms the XOR operation. Read more
impl Add<i32> for Integer[src]
impl Add<i32> for Integertype Output = Integer
The resulting type after applying the + operator.
fn add(self, rhs: i32) -> Integer[src]
fn add(self, rhs: i32) -> IntegerPerforms the + operation.
impl<'t> Add<&'t i32> for Integer[src]
impl<'t> Add<&'t i32> for Integertype Output = Integer
The resulting type after applying the + operator.
fn add(self, rhs: &i32) -> Integer[src]
fn add(self, rhs: &i32) -> IntegerPerforms the + operation.
impl<'b> Add<i32> for &'b Integer[src]
impl<'b> Add<i32> for &'b Integertype Output = AddI32Incomplete<'b>
The resulting type after applying the + operator.
fn add(self, rhs: i32) -> AddI32Incomplete<'b>[src]
fn add(self, rhs: i32) -> AddI32Incomplete<'b>Performs the + operation.
impl<'t, 'b> Add<&'t i32> for &'b Integer[src]
impl<'t, 'b> Add<&'t i32> for &'b Integertype Output = AddI32Incomplete<'b>
The resulting type after applying the + operator.
fn add(self, rhs: &i32) -> AddI32Incomplete<'b>[src]
fn add(self, rhs: &i32) -> AddI32Incomplete<'b>Performs the + operation.
impl AddAssign<i32> for Integer[src]
impl AddAssign<i32> for Integerfn add_assign(&mut self, rhs: i32)[src]
fn add_assign(&mut self, rhs: i32)Performs the += operation.
impl<'t> AddAssign<&'t i32> for Integer[src]
impl<'t> AddAssign<&'t i32> for Integerfn add_assign(&mut self, rhs: &i32)[src]
fn add_assign(&mut self, rhs: &i32)Performs the += operation.
impl Add<Integer> for i32[src]
impl Add<Integer> for i32type Output = Integer
The resulting type after applying the + operator.
fn add(self, rhs: Integer) -> Integer[src]
fn add(self, rhs: Integer) -> IntegerPerforms the + operation.
impl<'b> Add<&'b Integer> for i32[src]
impl<'b> Add<&'b Integer> for i32type Output = AddI32Incomplete<'b>
The resulting type after applying the + operator.
fn add(self, rhs: &Integer) -> AddI32Incomplete[src]
fn add(self, rhs: &Integer) -> AddI32IncompletePerforms the + operation.
impl<'t> Add<Integer> for &'t i32[src]
impl<'t> Add<Integer> for &'t i32type Output = Integer
The resulting type after applying the + operator.
fn add(self, rhs: Integer) -> Integer[src]
fn add(self, rhs: Integer) -> IntegerPerforms the + operation.
impl<'b, 't> Add<&'b Integer> for &'t i32[src]
impl<'b, 't> Add<&'b Integer> for &'t i32type Output = AddI32Incomplete<'b>
The resulting type after applying the + operator.
fn add(self, rhs: &Integer) -> AddI32Incomplete[src]
fn add(self, rhs: &Integer) -> AddI32IncompletePerforms the + operation.
impl AddFrom<i32> for Integer[src]
impl AddFrom<i32> for Integerimpl<'t> AddFrom<&'t i32> for Integer[src]
impl<'t> AddFrom<&'t i32> for Integerimpl Sub<i32> for Integer[src]
impl Sub<i32> for Integertype Output = Integer
The resulting type after applying the - operator.
fn sub(self, rhs: i32) -> Integer[src]
fn sub(self, rhs: i32) -> IntegerPerforms the - operation.
impl<'t> Sub<&'t i32> for Integer[src]
impl<'t> Sub<&'t i32> for Integertype Output = Integer
The resulting type after applying the - operator.
fn sub(self, rhs: &i32) -> Integer[src]
fn sub(self, rhs: &i32) -> IntegerPerforms the - operation.
impl<'b> Sub<i32> for &'b Integer[src]
impl<'b> Sub<i32> for &'b Integertype Output = SubI32Incomplete<'b>
The resulting type after applying the - operator.
fn sub(self, rhs: i32) -> SubI32Incomplete<'b>[src]
fn sub(self, rhs: i32) -> SubI32Incomplete<'b>Performs the - operation.
impl<'t, 'b> Sub<&'t i32> for &'b Integer[src]
impl<'t, 'b> Sub<&'t i32> for &'b Integertype Output = SubI32Incomplete<'b>
The resulting type after applying the - operator.
fn sub(self, rhs: &i32) -> SubI32Incomplete<'b>[src]
fn sub(self, rhs: &i32) -> SubI32Incomplete<'b>Performs the - operation.
impl SubAssign<i32> for Integer[src]
impl SubAssign<i32> for Integerfn sub_assign(&mut self, rhs: i32)[src]
fn sub_assign(&mut self, rhs: i32)Performs the -= operation.
impl<'t> SubAssign<&'t i32> for Integer[src]
impl<'t> SubAssign<&'t i32> for Integerfn sub_assign(&mut self, rhs: &i32)[src]
fn sub_assign(&mut self, rhs: &i32)Performs the -= operation.
impl Sub<Integer> for i32[src]
impl Sub<Integer> for i32type Output = Integer
The resulting type after applying the - operator.
fn sub(self, rhs: Integer) -> Integer[src]
fn sub(self, rhs: Integer) -> IntegerPerforms the - operation.
impl<'b> Sub<&'b Integer> for i32[src]
impl<'b> Sub<&'b Integer> for i32type Output = SubFromI32Incomplete<'b>
The resulting type after applying the - operator.
fn sub(self, rhs: &Integer) -> SubFromI32Incomplete[src]
fn sub(self, rhs: &Integer) -> SubFromI32IncompletePerforms the - operation.
impl<'t> Sub<Integer> for &'t i32[src]
impl<'t> Sub<Integer> for &'t i32type Output = Integer
The resulting type after applying the - operator.
fn sub(self, rhs: Integer) -> Integer[src]
fn sub(self, rhs: Integer) -> IntegerPerforms the - operation.
impl<'b, 't> Sub<&'b Integer> for &'t i32[src]
impl<'b, 't> Sub<&'b Integer> for &'t i32type Output = SubFromI32Incomplete<'b>
The resulting type after applying the - operator.
fn sub(self, rhs: &'b Integer) -> SubFromI32Incomplete<'b>[src]
fn sub(self, rhs: &'b Integer) -> SubFromI32Incomplete<'b>Performs the - operation.
impl SubFrom<i32> for Integer[src]
impl SubFrom<i32> for Integerimpl<'t> SubFrom<&'t i32> for Integer[src]
impl<'t> SubFrom<&'t i32> for Integerimpl Mul<i32> for Integer[src]
impl Mul<i32> for Integertype Output = Integer
The resulting type after applying the * operator.
fn mul(self, rhs: i32) -> Integer[src]
fn mul(self, rhs: i32) -> IntegerPerforms the * operation.
impl<'t> Mul<&'t i32> for Integer[src]
impl<'t> Mul<&'t i32> for Integertype Output = Integer
The resulting type after applying the * operator.
fn mul(self, rhs: &i32) -> Integer[src]
fn mul(self, rhs: &i32) -> IntegerPerforms the * operation.
impl<'b> Mul<i32> for &'b Integer[src]
impl<'b> Mul<i32> for &'b Integertype Output = MulI32Incomplete<'b>
The resulting type after applying the * operator.
fn mul(self, rhs: i32) -> MulI32Incomplete<'b>[src]
fn mul(self, rhs: i32) -> MulI32Incomplete<'b>Performs the * operation.
impl<'t, 'b> Mul<&'t i32> for &'b Integer[src]
impl<'t, 'b> Mul<&'t i32> for &'b Integertype Output = MulI32Incomplete<'b>
The resulting type after applying the * operator.
fn mul(self, rhs: &i32) -> MulI32Incomplete<'b>[src]
fn mul(self, rhs: &i32) -> MulI32Incomplete<'b>Performs the * operation.
impl MulAssign<i32> for Integer[src]
impl MulAssign<i32> for Integerfn mul_assign(&mut self, rhs: i32)[src]
fn mul_assign(&mut self, rhs: i32)Performs the *= operation.
impl<'t> MulAssign<&'t i32> for Integer[src]
impl<'t> MulAssign<&'t i32> for Integerfn mul_assign(&mut self, rhs: &i32)[src]
fn mul_assign(&mut self, rhs: &i32)Performs the *= operation.
impl Mul<Integer> for i32[src]
impl Mul<Integer> for i32type Output = Integer
The resulting type after applying the * operator.
fn mul(self, rhs: Integer) -> Integer[src]
fn mul(self, rhs: Integer) -> IntegerPerforms the * operation.
impl<'b> Mul<&'b Integer> for i32[src]
impl<'b> Mul<&'b Integer> for i32type Output = MulI32Incomplete<'b>
The resulting type after applying the * operator.
fn mul(self, rhs: &Integer) -> MulI32Incomplete[src]
fn mul(self, rhs: &Integer) -> MulI32IncompletePerforms the * operation.
impl<'t> Mul<Integer> for &'t i32[src]
impl<'t> Mul<Integer> for &'t i32type Output = Integer
The resulting type after applying the * operator.
fn mul(self, rhs: Integer) -> Integer[src]
fn mul(self, rhs: Integer) -> IntegerPerforms the * operation.
impl<'b, 't> Mul<&'b Integer> for &'t i32[src]
impl<'b, 't> Mul<&'b Integer> for &'t i32type Output = MulI32Incomplete<'b>
The resulting type after applying the * operator.
fn mul(self, rhs: &Integer) -> MulI32Incomplete[src]
fn mul(self, rhs: &Integer) -> MulI32IncompletePerforms the * operation.
impl MulFrom<i32> for Integer[src]
impl MulFrom<i32> for Integerimpl<'t> MulFrom<&'t i32> for Integer[src]
impl<'t> MulFrom<&'t i32> for Integerimpl Div<i32> for Integer[src]
impl Div<i32> for Integertype Output = Integer
The resulting type after applying the / operator.
fn div(self, rhs: i32) -> Integer[src]
fn div(self, rhs: i32) -> IntegerPerforms the / operation.
impl<'t> Div<&'t i32> for Integer[src]
impl<'t> Div<&'t i32> for Integertype Output = Integer
The resulting type after applying the / operator.
fn div(self, rhs: &i32) -> Integer[src]
fn div(self, rhs: &i32) -> IntegerPerforms the / operation.
impl<'b> Div<i32> for &'b Integer[src]
impl<'b> Div<i32> for &'b Integertype Output = DivI32Incomplete<'b>
The resulting type after applying the / operator.
fn div(self, rhs: i32) -> DivI32Incomplete<'b>[src]
fn div(self, rhs: i32) -> DivI32Incomplete<'b>Performs the / operation.
impl<'t, 'b> Div<&'t i32> for &'b Integer[src]
impl<'t, 'b> Div<&'t i32> for &'b Integertype Output = DivI32Incomplete<'b>
The resulting type after applying the / operator.
fn div(self, rhs: &i32) -> DivI32Incomplete<'b>[src]
fn div(self, rhs: &i32) -> DivI32Incomplete<'b>Performs the / operation.
impl DivAssign<i32> for Integer[src]
impl DivAssign<i32> for Integerfn div_assign(&mut self, rhs: i32)[src]
fn div_assign(&mut self, rhs: i32)Performs the /= operation.
impl<'t> DivAssign<&'t i32> for Integer[src]
impl<'t> DivAssign<&'t i32> for Integerfn div_assign(&mut self, rhs: &i32)[src]
fn div_assign(&mut self, rhs: &i32)Performs the /= operation.
impl Div<Integer> for i32[src]
impl Div<Integer> for i32type Output = Integer
The resulting type after applying the / operator.
fn div(self, rhs: Integer) -> Integer[src]
fn div(self, rhs: Integer) -> IntegerPerforms the / operation.
impl<'b> Div<&'b Integer> for i32[src]
impl<'b> Div<&'b Integer> for i32type Output = DivFromI32Incomplete<'b>
The resulting type after applying the / operator.
fn div(self, rhs: &Integer) -> DivFromI32Incomplete[src]
fn div(self, rhs: &Integer) -> DivFromI32IncompletePerforms the / operation.
impl<'t> Div<Integer> for &'t i32[src]
impl<'t> Div<Integer> for &'t i32type Output = Integer
The resulting type after applying the / operator.
fn div(self, rhs: Integer) -> Integer[src]
fn div(self, rhs: Integer) -> IntegerPerforms the / operation.
impl<'b, 't> Div<&'b Integer> for &'t i32[src]
impl<'b, 't> Div<&'b Integer> for &'t i32type Output = DivFromI32Incomplete<'b>
The resulting type after applying the / operator.
fn div(self, rhs: &'b Integer) -> DivFromI32Incomplete<'b>[src]
fn div(self, rhs: &'b Integer) -> DivFromI32Incomplete<'b>Performs the / operation.
impl DivFrom<i32> for Integer[src]
impl DivFrom<i32> for Integerimpl<'t> DivFrom<&'t i32> for Integer[src]
impl<'t> DivFrom<&'t i32> for Integerimpl Rem<i32> for Integer[src]
impl Rem<i32> for Integertype Output = Integer
The resulting type after applying the % operator.
fn rem(self, rhs: i32) -> Integer[src]
fn rem(self, rhs: i32) -> IntegerPerforms the % operation.
impl<'t> Rem<&'t i32> for Integer[src]
impl<'t> Rem<&'t i32> for Integertype Output = Integer
The resulting type after applying the % operator.
fn rem(self, rhs: &i32) -> Integer[src]
fn rem(self, rhs: &i32) -> IntegerPerforms the % operation.
impl<'b> Rem<i32> for &'b Integer[src]
impl<'b> Rem<i32> for &'b Integertype Output = RemI32Incomplete<'b>
The resulting type after applying the % operator.
fn rem(self, rhs: i32) -> RemI32Incomplete<'b>[src]
fn rem(self, rhs: i32) -> RemI32Incomplete<'b>Performs the % operation.
impl<'t, 'b> Rem<&'t i32> for &'b Integer[src]
impl<'t, 'b> Rem<&'t i32> for &'b Integertype Output = RemI32Incomplete<'b>
The resulting type after applying the % operator.
fn rem(self, rhs: &i32) -> RemI32Incomplete<'b>[src]
fn rem(self, rhs: &i32) -> RemI32Incomplete<'b>Performs the % operation.
impl RemAssign<i32> for Integer[src]
impl RemAssign<i32> for Integerfn rem_assign(&mut self, rhs: i32)[src]
fn rem_assign(&mut self, rhs: i32)Performs the %= operation.
impl<'t> RemAssign<&'t i32> for Integer[src]
impl<'t> RemAssign<&'t i32> for Integerfn rem_assign(&mut self, rhs: &i32)[src]
fn rem_assign(&mut self, rhs: &i32)Performs the %= operation.
impl Rem<Integer> for i32[src]
impl Rem<Integer> for i32type Output = Integer
The resulting type after applying the % operator.
fn rem(self, rhs: Integer) -> Integer[src]
fn rem(self, rhs: Integer) -> IntegerPerforms the % operation.
impl<'b> Rem<&'b Integer> for i32[src]
impl<'b> Rem<&'b Integer> for i32type Output = RemFromI32Incomplete<'b>
The resulting type after applying the % operator.
fn rem(self, rhs: &Integer) -> RemFromI32Incomplete[src]
fn rem(self, rhs: &Integer) -> RemFromI32IncompletePerforms the % operation.
impl<'t> Rem<Integer> for &'t i32[src]
impl<'t> Rem<Integer> for &'t i32type Output = Integer
The resulting type after applying the % operator.
fn rem(self, rhs: Integer) -> Integer[src]
fn rem(self, rhs: Integer) -> IntegerPerforms the % operation.
impl<'b, 't> Rem<&'b Integer> for &'t i32[src]
impl<'b, 't> Rem<&'b Integer> for &'t i32type Output = RemFromI32Incomplete<'b>
The resulting type after applying the % operator.
fn rem(self, rhs: &'b Integer) -> RemFromI32Incomplete<'b>[src]
fn rem(self, rhs: &'b Integer) -> RemFromI32Incomplete<'b>Performs the % operation.
impl RemFrom<i32> for Integer[src]
impl RemFrom<i32> for Integerimpl<'t> RemFrom<&'t i32> for Integer[src]
impl<'t> RemFrom<&'t i32> for Integerimpl Shl<i32> for Integer[src]
impl Shl<i32> for Integertype Output = Integer
The resulting type after applying the << operator.
fn shl(self, rhs: i32) -> Integer[src]
fn shl(self, rhs: i32) -> IntegerPerforms the << operation.
impl<'t> Shl<&'t i32> for Integer[src]
impl<'t> Shl<&'t i32> for Integertype Output = Integer
The resulting type after applying the << operator.
fn shl(self, rhs: &i32) -> Integer[src]
fn shl(self, rhs: &i32) -> IntegerPerforms the << operation.
impl<'b> Shl<i32> for &'b Integer[src]
impl<'b> Shl<i32> for &'b Integertype Output = ShlI32Incomplete<'b>
The resulting type after applying the << operator.
fn shl(self, rhs: i32) -> ShlI32Incomplete<'b>[src]
fn shl(self, rhs: i32) -> ShlI32Incomplete<'b>Performs the << operation.
impl<'t, 'b> Shl<&'t i32> for &'b Integer[src]
impl<'t, 'b> Shl<&'t i32> for &'b Integertype Output = ShlI32Incomplete<'b>
The resulting type after applying the << operator.
fn shl(self, rhs: &i32) -> ShlI32Incomplete<'b>[src]
fn shl(self, rhs: &i32) -> ShlI32Incomplete<'b>Performs the << operation.
impl ShlAssign<i32> for Integer[src]
impl ShlAssign<i32> for Integerfn shl_assign(&mut self, rhs: i32)[src]
fn shl_assign(&mut self, rhs: i32)Performs the <<= operation.
impl<'t> ShlAssign<&'t i32> for Integer[src]
impl<'t> ShlAssign<&'t i32> for Integerfn shl_assign(&mut self, rhs: &i32)[src]
fn shl_assign(&mut self, rhs: &i32)Performs the <<= operation.
impl Shr<i32> for Integer[src]
impl Shr<i32> for Integertype Output = Integer
The resulting type after applying the >> operator.
fn shr(self, rhs: i32) -> Integer[src]
fn shr(self, rhs: i32) -> IntegerPerforms the >> operation.
impl<'t> Shr<&'t i32> for Integer[src]
impl<'t> Shr<&'t i32> for Integertype Output = Integer
The resulting type after applying the >> operator.
fn shr(self, rhs: &i32) -> Integer[src]
fn shr(self, rhs: &i32) -> IntegerPerforms the >> operation.
impl<'b> Shr<i32> for &'b Integer[src]
impl<'b> Shr<i32> for &'b Integertype Output = ShrI32Incomplete<'b>
The resulting type after applying the >> operator.
fn shr(self, rhs: i32) -> ShrI32Incomplete<'b>[src]
fn shr(self, rhs: i32) -> ShrI32Incomplete<'b>Performs the >> operation.
impl<'t, 'b> Shr<&'t i32> for &'b Integer[src]
impl<'t, 'b> Shr<&'t i32> for &'b Integertype Output = ShrI32Incomplete<'b>
The resulting type after applying the >> operator.
fn shr(self, rhs: &i32) -> ShrI32Incomplete<'b>[src]
fn shr(self, rhs: &i32) -> ShrI32Incomplete<'b>Performs the >> operation.
impl ShrAssign<i32> for Integer[src]
impl ShrAssign<i32> for Integerfn shr_assign(&mut self, rhs: i32)[src]
fn shr_assign(&mut self, rhs: i32)Performs the >>= operation.
impl<'t> ShrAssign<&'t i32> for Integer[src]
impl<'t> ShrAssign<&'t i32> for Integerfn shr_assign(&mut self, rhs: &i32)[src]
fn shr_assign(&mut self, rhs: &i32)Performs the >>= operation.
impl BitAnd<i32> for Integer[src]
impl BitAnd<i32> for Integertype Output = Integer
The resulting type after applying the & operator.
fn bitand(self, rhs: i32) -> Integer[src]
fn bitand(self, rhs: i32) -> IntegerPerforms the & operation.
impl<'t> BitAnd<&'t i32> for Integer[src]
impl<'t> BitAnd<&'t i32> for Integertype Output = Integer
The resulting type after applying the & operator.
fn bitand(self, rhs: &i32) -> Integer[src]
fn bitand(self, rhs: &i32) -> IntegerPerforms the & operation.
impl<'b> BitAnd<i32> for &'b Integer[src]
impl<'b> BitAnd<i32> for &'b Integertype Output = BitAndI32Incomplete<'b>
The resulting type after applying the & operator.
fn bitand(self, rhs: i32) -> BitAndI32Incomplete<'b>[src]
fn bitand(self, rhs: i32) -> BitAndI32Incomplete<'b>Performs the & operation.
impl<'t, 'b> BitAnd<&'t i32> for &'b Integer[src]
impl<'t, 'b> BitAnd<&'t i32> for &'b Integertype Output = BitAndI32Incomplete<'b>
The resulting type after applying the & operator.
fn bitand(self, rhs: &i32) -> BitAndI32Incomplete<'b>[src]
fn bitand(self, rhs: &i32) -> BitAndI32Incomplete<'b>Performs the & operation.
impl BitAndAssign<i32> for Integer[src]
impl BitAndAssign<i32> for Integerfn bitand_assign(&mut self, rhs: i32)[src]
fn bitand_assign(&mut self, rhs: i32)Performs the &= operation.
impl<'t> BitAndAssign<&'t i32> for Integer[src]
impl<'t> BitAndAssign<&'t i32> for Integerfn bitand_assign(&mut self, rhs: &i32)[src]
fn bitand_assign(&mut self, rhs: &i32)Performs the &= operation.
impl BitAnd<Integer> for i32[src]
impl BitAnd<Integer> for i32type Output = Integer
The resulting type after applying the & operator.
fn bitand(self, rhs: Integer) -> Integer[src]
fn bitand(self, rhs: Integer) -> IntegerPerforms the & operation.
impl<'b> BitAnd<&'b Integer> for i32[src]
impl<'b> BitAnd<&'b Integer> for i32type Output = BitAndI32Incomplete<'b>
The resulting type after applying the & operator.
fn bitand(self, rhs: &Integer) -> BitAndI32Incomplete[src]
fn bitand(self, rhs: &Integer) -> BitAndI32IncompletePerforms the & operation.
impl<'t> BitAnd<Integer> for &'t i32[src]
impl<'t> BitAnd<Integer> for &'t i32type Output = Integer
The resulting type after applying the & operator.
fn bitand(self, rhs: Integer) -> Integer[src]
fn bitand(self, rhs: Integer) -> IntegerPerforms the & operation.
impl<'b, 't> BitAnd<&'b Integer> for &'t i32[src]
impl<'b, 't> BitAnd<&'b Integer> for &'t i32type Output = BitAndI32Incomplete<'b>
The resulting type after applying the & operator.
fn bitand(self, rhs: &Integer) -> BitAndI32Incomplete[src]
fn bitand(self, rhs: &Integer) -> BitAndI32IncompletePerforms the & operation.
impl BitAndFrom<i32> for Integer[src]
impl BitAndFrom<i32> for Integerfn bitand_from(&mut self, lhs: i32)[src]
fn bitand_from(&mut self, lhs: i32)Peforms the AND operation. Read more
impl<'t> BitAndFrom<&'t i32> for Integer[src]
impl<'t> BitAndFrom<&'t i32> for Integerfn bitand_from(&mut self, lhs: &i32)[src]
fn bitand_from(&mut self, lhs: &i32)Peforms the AND operation. Read more
impl BitOr<i32> for Integer[src]
impl BitOr<i32> for Integertype Output = Integer
The resulting type after applying the | operator.
fn bitor(self, rhs: i32) -> Integer[src]
fn bitor(self, rhs: i32) -> IntegerPerforms the | operation.
impl<'t> BitOr<&'t i32> for Integer[src]
impl<'t> BitOr<&'t i32> for Integertype Output = Integer
The resulting type after applying the | operator.
fn bitor(self, rhs: &i32) -> Integer[src]
fn bitor(self, rhs: &i32) -> IntegerPerforms the | operation.
impl<'b> BitOr<i32> for &'b Integer[src]
impl<'b> BitOr<i32> for &'b Integertype Output = BitOrI32Incomplete<'b>
The resulting type after applying the | operator.
fn bitor(self, rhs: i32) -> BitOrI32Incomplete<'b>[src]
fn bitor(self, rhs: i32) -> BitOrI32Incomplete<'b>Performs the | operation.
impl<'t, 'b> BitOr<&'t i32> for &'b Integer[src]
impl<'t, 'b> BitOr<&'t i32> for &'b Integertype Output = BitOrI32Incomplete<'b>
The resulting type after applying the | operator.
fn bitor(self, rhs: &i32) -> BitOrI32Incomplete<'b>[src]
fn bitor(self, rhs: &i32) -> BitOrI32Incomplete<'b>Performs the | operation.
impl BitOrAssign<i32> for Integer[src]
impl BitOrAssign<i32> for Integerfn bitor_assign(&mut self, rhs: i32)[src]
fn bitor_assign(&mut self, rhs: i32)Performs the |= operation.
impl<'t> BitOrAssign<&'t i32> for Integer[src]
impl<'t> BitOrAssign<&'t i32> for Integerfn bitor_assign(&mut self, rhs: &i32)[src]
fn bitor_assign(&mut self, rhs: &i32)Performs the |= operation.
impl BitOr<Integer> for i32[src]
impl BitOr<Integer> for i32type Output = Integer
The resulting type after applying the | operator.
fn bitor(self, rhs: Integer) -> Integer[src]
fn bitor(self, rhs: Integer) -> IntegerPerforms the | operation.
impl<'b> BitOr<&'b Integer> for i32[src]
impl<'b> BitOr<&'b Integer> for i32type Output = BitOrI32Incomplete<'b>
The resulting type after applying the | operator.
fn bitor(self, rhs: &Integer) -> BitOrI32Incomplete[src]
fn bitor(self, rhs: &Integer) -> BitOrI32IncompletePerforms the | operation.
impl<'t> BitOr<Integer> for &'t i32[src]
impl<'t> BitOr<Integer> for &'t i32type Output = Integer
The resulting type after applying the | operator.
fn bitor(self, rhs: Integer) -> Integer[src]
fn bitor(self, rhs: Integer) -> IntegerPerforms the | operation.
impl<'b, 't> BitOr<&'b Integer> for &'t i32[src]
impl<'b, 't> BitOr<&'b Integer> for &'t i32type Output = BitOrI32Incomplete<'b>
The resulting type after applying the | operator.
fn bitor(self, rhs: &Integer) -> BitOrI32Incomplete[src]
fn bitor(self, rhs: &Integer) -> BitOrI32IncompletePerforms the | operation.
impl BitOrFrom<i32> for Integer[src]
impl BitOrFrom<i32> for Integerfn bitor_from(&mut self, lhs: i32)[src]
fn bitor_from(&mut self, lhs: i32)Peforms the OR operation. Read more
impl<'t> BitOrFrom<&'t i32> for Integer[src]
impl<'t> BitOrFrom<&'t i32> for Integerfn bitor_from(&mut self, lhs: &i32)[src]
fn bitor_from(&mut self, lhs: &i32)Peforms the OR operation. Read more
impl BitXor<i32> for Integer[src]
impl BitXor<i32> for Integertype Output = Integer
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: i32) -> Integer[src]
fn bitxor(self, rhs: i32) -> IntegerPerforms the ^ operation.
impl<'t> BitXor<&'t i32> for Integer[src]
impl<'t> BitXor<&'t i32> for Integertype Output = Integer
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: &i32) -> Integer[src]
fn bitxor(self, rhs: &i32) -> IntegerPerforms the ^ operation.
impl<'b> BitXor<i32> for &'b Integer[src]
impl<'b> BitXor<i32> for &'b Integertype Output = BitXorI32Incomplete<'b>
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: i32) -> BitXorI32Incomplete<'b>[src]
fn bitxor(self, rhs: i32) -> BitXorI32Incomplete<'b>Performs the ^ operation.
impl<'t, 'b> BitXor<&'t i32> for &'b Integer[src]
impl<'t, 'b> BitXor<&'t i32> for &'b Integertype Output = BitXorI32Incomplete<'b>
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: &i32) -> BitXorI32Incomplete<'b>[src]
fn bitxor(self, rhs: &i32) -> BitXorI32Incomplete<'b>Performs the ^ operation.
impl BitXorAssign<i32> for Integer[src]
impl BitXorAssign<i32> for Integerfn bitxor_assign(&mut self, rhs: i32)[src]
fn bitxor_assign(&mut self, rhs: i32)Performs the ^= operation.
impl<'t> BitXorAssign<&'t i32> for Integer[src]
impl<'t> BitXorAssign<&'t i32> for Integerfn bitxor_assign(&mut self, rhs: &i32)[src]
fn bitxor_assign(&mut self, rhs: &i32)Performs the ^= operation.
impl BitXor<Integer> for i32[src]
impl BitXor<Integer> for i32type Output = Integer
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: Integer) -> Integer[src]
fn bitxor(self, rhs: Integer) -> IntegerPerforms the ^ operation.
impl<'b> BitXor<&'b Integer> for i32[src]
impl<'b> BitXor<&'b Integer> for i32type Output = BitXorI32Incomplete<'b>
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: &Integer) -> BitXorI32Incomplete[src]
fn bitxor(self, rhs: &Integer) -> BitXorI32IncompletePerforms the ^ operation.
impl<'t> BitXor<Integer> for &'t i32[src]
impl<'t> BitXor<Integer> for &'t i32type Output = Integer
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: Integer) -> Integer[src]
fn bitxor(self, rhs: Integer) -> IntegerPerforms the ^ operation.
impl<'b, 't> BitXor<&'b Integer> for &'t i32[src]
impl<'b, 't> BitXor<&'b Integer> for &'t i32type Output = BitXorI32Incomplete<'b>
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: &Integer) -> BitXorI32Incomplete[src]
fn bitxor(self, rhs: &Integer) -> BitXorI32IncompletePerforms the ^ operation.
impl BitXorFrom<i32> for Integer[src]
impl BitXorFrom<i32> for Integerfn bitxor_from(&mut self, lhs: i32)[src]
fn bitxor_from(&mut self, lhs: i32)Peforms the XOR operation. Read more
impl<'t> BitXorFrom<&'t i32> for Integer[src]
impl<'t> BitXorFrom<&'t i32> for Integerfn bitxor_from(&mut self, lhs: &i32)[src]
fn bitxor_from(&mut self, lhs: &i32)Peforms the XOR operation. Read more
impl Add<u32> for Integer[src]
impl Add<u32> for Integertype Output = Integer
The resulting type after applying the + operator.
fn add(self, rhs: u32) -> Integer[src]
fn add(self, rhs: u32) -> IntegerPerforms the + operation.
impl<'t> Add<&'t u32> for Integer[src]
impl<'t> Add<&'t u32> for Integertype Output = Integer
The resulting type after applying the + operator.
fn add(self, rhs: &u32) -> Integer[src]
fn add(self, rhs: &u32) -> IntegerPerforms the + operation.
impl<'b> Add<u32> for &'b Integer[src]
impl<'b> Add<u32> for &'b Integertype Output = AddU32Incomplete<'b>
The resulting type after applying the + operator.
fn add(self, rhs: u32) -> AddU32Incomplete<'b>[src]
fn add(self, rhs: u32) -> AddU32Incomplete<'b>Performs the + operation.
impl<'t, 'b> Add<&'t u32> for &'b Integer[src]
impl<'t, 'b> Add<&'t u32> for &'b Integertype Output = AddU32Incomplete<'b>
The resulting type after applying the + operator.
fn add(self, rhs: &u32) -> AddU32Incomplete<'b>[src]
fn add(self, rhs: &u32) -> AddU32Incomplete<'b>Performs the + operation.
impl AddAssign<u32> for Integer[src]
impl AddAssign<u32> for Integerfn add_assign(&mut self, rhs: u32)[src]
fn add_assign(&mut self, rhs: u32)Performs the += operation.
impl<'t> AddAssign<&'t u32> for Integer[src]
impl<'t> AddAssign<&'t u32> for Integerfn add_assign(&mut self, rhs: &u32)[src]
fn add_assign(&mut self, rhs: &u32)Performs the += operation.
impl Add<Integer> for u32[src]
impl Add<Integer> for u32type Output = Integer
The resulting type after applying the + operator.
fn add(self, rhs: Integer) -> Integer[src]
fn add(self, rhs: Integer) -> IntegerPerforms the + operation.
impl<'b> Add<&'b Integer> for u32[src]
impl<'b> Add<&'b Integer> for u32type Output = AddU32Incomplete<'b>
The resulting type after applying the + operator.
fn add(self, rhs: &Integer) -> AddU32Incomplete[src]
fn add(self, rhs: &Integer) -> AddU32IncompletePerforms the + operation.
impl<'t> Add<Integer> for &'t u32[src]
impl<'t> Add<Integer> for &'t u32type Output = Integer
The resulting type after applying the + operator.
fn add(self, rhs: Integer) -> Integer[src]
fn add(self, rhs: Integer) -> IntegerPerforms the + operation.
impl<'b, 't> Add<&'b Integer> for &'t u32[src]
impl<'b, 't> Add<&'b Integer> for &'t u32type Output = AddU32Incomplete<'b>
The resulting type after applying the + operator.
fn add(self, rhs: &Integer) -> AddU32Incomplete[src]
fn add(self, rhs: &Integer) -> AddU32IncompletePerforms the + operation.
impl AddFrom<u32> for Integer[src]
impl AddFrom<u32> for Integerimpl<'t> AddFrom<&'t u32> for Integer[src]
impl<'t> AddFrom<&'t u32> for Integerimpl Sub<u32> for Integer[src]
impl Sub<u32> for Integertype Output = Integer
The resulting type after applying the - operator.
fn sub(self, rhs: u32) -> Integer[src]
fn sub(self, rhs: u32) -> IntegerPerforms the - operation.
impl<'t> Sub<&'t u32> for Integer[src]
impl<'t> Sub<&'t u32> for Integertype Output = Integer
The resulting type after applying the - operator.
fn sub(self, rhs: &u32) -> Integer[src]
fn sub(self, rhs: &u32) -> IntegerPerforms the - operation.
impl<'b> Sub<u32> for &'b Integer[src]
impl<'b> Sub<u32> for &'b Integertype Output = SubU32Incomplete<'b>
The resulting type after applying the - operator.
fn sub(self, rhs: u32) -> SubU32Incomplete<'b>[src]
fn sub(self, rhs: u32) -> SubU32Incomplete<'b>Performs the - operation.
impl<'t, 'b> Sub<&'t u32> for &'b Integer[src]
impl<'t, 'b> Sub<&'t u32> for &'b Integertype Output = SubU32Incomplete<'b>
The resulting type after applying the - operator.
fn sub(self, rhs: &u32) -> SubU32Incomplete<'b>[src]
fn sub(self, rhs: &u32) -> SubU32Incomplete<'b>Performs the - operation.
impl SubAssign<u32> for Integer[src]
impl SubAssign<u32> for Integerfn sub_assign(&mut self, rhs: u32)[src]
fn sub_assign(&mut self, rhs: u32)Performs the -= operation.
impl<'t> SubAssign<&'t u32> for Integer[src]
impl<'t> SubAssign<&'t u32> for Integerfn sub_assign(&mut self, rhs: &u32)[src]
fn sub_assign(&mut self, rhs: &u32)Performs the -= operation.
impl Sub<Integer> for u32[src]
impl Sub<Integer> for u32type Output = Integer
The resulting type after applying the - operator.
fn sub(self, rhs: Integer) -> Integer[src]
fn sub(self, rhs: Integer) -> IntegerPerforms the - operation.
impl<'b> Sub<&'b Integer> for u32[src]
impl<'b> Sub<&'b Integer> for u32type Output = SubFromU32Incomplete<'b>
The resulting type after applying the - operator.
fn sub(self, rhs: &Integer) -> SubFromU32Incomplete[src]
fn sub(self, rhs: &Integer) -> SubFromU32IncompletePerforms the - operation.
impl<'t> Sub<Integer> for &'t u32[src]
impl<'t> Sub<Integer> for &'t u32type Output = Integer
The resulting type after applying the - operator.
fn sub(self, rhs: Integer) -> Integer[src]
fn sub(self, rhs: Integer) -> IntegerPerforms the - operation.
impl<'b, 't> Sub<&'b Integer> for &'t u32[src]
impl<'b, 't> Sub<&'b Integer> for &'t u32type Output = SubFromU32Incomplete<'b>
The resulting type after applying the - operator.
fn sub(self, rhs: &'b Integer) -> SubFromU32Incomplete<'b>[src]
fn sub(self, rhs: &'b Integer) -> SubFromU32Incomplete<'b>Performs the - operation.
impl SubFrom<u32> for Integer[src]
impl SubFrom<u32> for Integerimpl<'t> SubFrom<&'t u32> for Integer[src]
impl<'t> SubFrom<&'t u32> for Integerimpl Mul<u32> for Integer[src]
impl Mul<u32> for Integertype Output = Integer
The resulting type after applying the * operator.
fn mul(self, rhs: u32) -> Integer[src]
fn mul(self, rhs: u32) -> IntegerPerforms the * operation.
impl<'t> Mul<&'t u32> for Integer[src]
impl<'t> Mul<&'t u32> for Integertype Output = Integer
The resulting type after applying the * operator.
fn mul(self, rhs: &u32) -> Integer[src]
fn mul(self, rhs: &u32) -> IntegerPerforms the * operation.
impl<'b> Mul<u32> for &'b Integer[src]
impl<'b> Mul<u32> for &'b Integertype Output = MulU32Incomplete<'b>
The resulting type after applying the * operator.
fn mul(self, rhs: u32) -> MulU32Incomplete<'b>[src]
fn mul(self, rhs: u32) -> MulU32Incomplete<'b>Performs the * operation.
impl<'t, 'b> Mul<&'t u32> for &'b Integer[src]
impl<'t, 'b> Mul<&'t u32> for &'b Integertype Output = MulU32Incomplete<'b>
The resulting type after applying the * operator.
fn mul(self, rhs: &u32) -> MulU32Incomplete<'b>[src]
fn mul(self, rhs: &u32) -> MulU32Incomplete<'b>Performs the * operation.
impl MulAssign<u32> for Integer[src]
impl MulAssign<u32> for Integerfn mul_assign(&mut self, rhs: u32)[src]
fn mul_assign(&mut self, rhs: u32)Performs the *= operation.
impl<'t> MulAssign<&'t u32> for Integer[src]
impl<'t> MulAssign<&'t u32> for Integerfn mul_assign(&mut self, rhs: &u32)[src]
fn mul_assign(&mut self, rhs: &u32)Performs the *= operation.
impl Mul<Integer> for u32[src]
impl Mul<Integer> for u32type Output = Integer
The resulting type after applying the * operator.
fn mul(self, rhs: Integer) -> Integer[src]
fn mul(self, rhs: Integer) -> IntegerPerforms the * operation.
impl<'b> Mul<&'b Integer> for u32[src]
impl<'b> Mul<&'b Integer> for u32type Output = MulU32Incomplete<'b>
The resulting type after applying the * operator.
fn mul(self, rhs: &Integer) -> MulU32Incomplete[src]
fn mul(self, rhs: &Integer) -> MulU32IncompletePerforms the * operation.
impl<'t> Mul<Integer> for &'t u32[src]
impl<'t> Mul<Integer> for &'t u32type Output = Integer
The resulting type after applying the * operator.
fn mul(self, rhs: Integer) -> Integer[src]
fn mul(self, rhs: Integer) -> IntegerPerforms the * operation.
impl<'b, 't> Mul<&'b Integer> for &'t u32[src]
impl<'b, 't> Mul<&'b Integer> for &'t u32type Output = MulU32Incomplete<'b>
The resulting type after applying the * operator.
fn mul(self, rhs: &Integer) -> MulU32Incomplete[src]
fn mul(self, rhs: &Integer) -> MulU32IncompletePerforms the * operation.
impl MulFrom<u32> for Integer[src]
impl MulFrom<u32> for Integerimpl<'t> MulFrom<&'t u32> for Integer[src]
impl<'t> MulFrom<&'t u32> for Integerimpl Div<u32> for Integer[src]
impl Div<u32> for Integertype Output = Integer
The resulting type after applying the / operator.
fn div(self, rhs: u32) -> Integer[src]
fn div(self, rhs: u32) -> IntegerPerforms the / operation.
impl<'t> Div<&'t u32> for Integer[src]
impl<'t> Div<&'t u32> for Integertype Output = Integer
The resulting type after applying the / operator.
fn div(self, rhs: &u32) -> Integer[src]
fn div(self, rhs: &u32) -> IntegerPerforms the / operation.
impl<'b> Div<u32> for &'b Integer[src]
impl<'b> Div<u32> for &'b Integertype Output = DivU32Incomplete<'b>
The resulting type after applying the / operator.
fn div(self, rhs: u32) -> DivU32Incomplete<'b>[src]
fn div(self, rhs: u32) -> DivU32Incomplete<'b>Performs the / operation.
impl<'t, 'b> Div<&'t u32> for &'b Integer[src]
impl<'t, 'b> Div<&'t u32> for &'b Integertype Output = DivU32Incomplete<'b>
The resulting type after applying the / operator.
fn div(self, rhs: &u32) -> DivU32Incomplete<'b>[src]
fn div(self, rhs: &u32) -> DivU32Incomplete<'b>Performs the / operation.
impl DivAssign<u32> for Integer[src]
impl DivAssign<u32> for Integerfn div_assign(&mut self, rhs: u32)[src]
fn div_assign(&mut self, rhs: u32)Performs the /= operation.
impl<'t> DivAssign<&'t u32> for Integer[src]
impl<'t> DivAssign<&'t u32> for Integerfn div_assign(&mut self, rhs: &u32)[src]
fn div_assign(&mut self, rhs: &u32)Performs the /= operation.
impl Div<Integer> for u32[src]
impl Div<Integer> for u32type Output = Integer
The resulting type after applying the / operator.
fn div(self, rhs: Integer) -> Integer[src]
fn div(self, rhs: Integer) -> IntegerPerforms the / operation.
impl<'b> Div<&'b Integer> for u32[src]
impl<'b> Div<&'b Integer> for u32type Output = DivFromU32Incomplete<'b>
The resulting type after applying the / operator.
fn div(self, rhs: &Integer) -> DivFromU32Incomplete[src]
fn div(self, rhs: &Integer) -> DivFromU32IncompletePerforms the / operation.
impl<'t> Div<Integer> for &'t u32[src]
impl<'t> Div<Integer> for &'t u32type Output = Integer
The resulting type after applying the / operator.
fn div(self, rhs: Integer) -> Integer[src]
fn div(self, rhs: Integer) -> IntegerPerforms the / operation.
impl<'b, 't> Div<&'b Integer> for &'t u32[src]
impl<'b, 't> Div<&'b Integer> for &'t u32type Output = DivFromU32Incomplete<'b>
The resulting type after applying the / operator.
fn div(self, rhs: &'b Integer) -> DivFromU32Incomplete<'b>[src]
fn div(self, rhs: &'b Integer) -> DivFromU32Incomplete<'b>Performs the / operation.
impl DivFrom<u32> for Integer[src]
impl DivFrom<u32> for Integerimpl<'t> DivFrom<&'t u32> for Integer[src]
impl<'t> DivFrom<&'t u32> for Integerimpl Rem<u32> for Integer[src]
impl Rem<u32> for Integertype Output = Integer
The resulting type after applying the % operator.
fn rem(self, rhs: u32) -> Integer[src]
fn rem(self, rhs: u32) -> IntegerPerforms the % operation.
impl<'t> Rem<&'t u32> for Integer[src]
impl<'t> Rem<&'t u32> for Integertype Output = Integer
The resulting type after applying the % operator.
fn rem(self, rhs: &u32) -> Integer[src]
fn rem(self, rhs: &u32) -> IntegerPerforms the % operation.
impl<'b> Rem<u32> for &'b Integer[src]
impl<'b> Rem<u32> for &'b Integertype Output = RemU32Incomplete<'b>
The resulting type after applying the % operator.
fn rem(self, rhs: u32) -> RemU32Incomplete<'b>[src]
fn rem(self, rhs: u32) -> RemU32Incomplete<'b>Performs the % operation.
impl<'t, 'b> Rem<&'t u32> for &'b Integer[src]
impl<'t, 'b> Rem<&'t u32> for &'b Integertype Output = RemU32Incomplete<'b>
The resulting type after applying the % operator.
fn rem(self, rhs: &u32) -> RemU32Incomplete<'b>[src]
fn rem(self, rhs: &u32) -> RemU32Incomplete<'b>Performs the % operation.
impl RemAssign<u32> for Integer[src]
impl RemAssign<u32> for Integerfn rem_assign(&mut self, rhs: u32)[src]
fn rem_assign(&mut self, rhs: u32)Performs the %= operation.
impl<'t> RemAssign<&'t u32> for Integer[src]
impl<'t> RemAssign<&'t u32> for Integerfn rem_assign(&mut self, rhs: &u32)[src]
fn rem_assign(&mut self, rhs: &u32)Performs the %= operation.
impl Rem<Integer> for u32[src]
impl Rem<Integer> for u32type Output = Integer
The resulting type after applying the % operator.
fn rem(self, rhs: Integer) -> Integer[src]
fn rem(self, rhs: Integer) -> IntegerPerforms the % operation.
impl<'b> Rem<&'b Integer> for u32[src]
impl<'b> Rem<&'b Integer> for u32type Output = RemFromU32Incomplete<'b>
The resulting type after applying the % operator.
fn rem(self, rhs: &Integer) -> RemFromU32Incomplete[src]
fn rem(self, rhs: &Integer) -> RemFromU32IncompletePerforms the % operation.
impl<'t> Rem<Integer> for &'t u32[src]
impl<'t> Rem<Integer> for &'t u32type Output = Integer
The resulting type after applying the % operator.
fn rem(self, rhs: Integer) -> Integer[src]
fn rem(self, rhs: Integer) -> IntegerPerforms the % operation.
impl<'b, 't> Rem<&'b Integer> for &'t u32[src]
impl<'b, 't> Rem<&'b Integer> for &'t u32type Output = RemFromU32Incomplete<'b>
The resulting type after applying the % operator.
fn rem(self, rhs: &'b Integer) -> RemFromU32Incomplete<'b>[src]
fn rem(self, rhs: &'b Integer) -> RemFromU32Incomplete<'b>Performs the % operation.
impl RemFrom<u32> for Integer[src]
impl RemFrom<u32> for Integerimpl<'t> RemFrom<&'t u32> for Integer[src]
impl<'t> RemFrom<&'t u32> for Integerimpl Shl<u32> for Integer[src]
impl Shl<u32> for Integertype Output = Integer
The resulting type after applying the << operator.
fn shl(self, rhs: u32) -> Integer[src]
fn shl(self, rhs: u32) -> IntegerPerforms the << operation.
impl<'t> Shl<&'t u32> for Integer[src]
impl<'t> Shl<&'t u32> for Integertype Output = Integer
The resulting type after applying the << operator.
fn shl(self, rhs: &u32) -> Integer[src]
fn shl(self, rhs: &u32) -> IntegerPerforms the << operation.
impl<'b> Shl<u32> for &'b Integer[src]
impl<'b> Shl<u32> for &'b Integertype Output = ShlU32Incomplete<'b>
The resulting type after applying the << operator.
fn shl(self, rhs: u32) -> ShlU32Incomplete<'b>[src]
fn shl(self, rhs: u32) -> ShlU32Incomplete<'b>Performs the << operation.
impl<'t, 'b> Shl<&'t u32> for &'b Integer[src]
impl<'t, 'b> Shl<&'t u32> for &'b Integertype Output = ShlU32Incomplete<'b>
The resulting type after applying the << operator.
fn shl(self, rhs: &u32) -> ShlU32Incomplete<'b>[src]
fn shl(self, rhs: &u32) -> ShlU32Incomplete<'b>Performs the << operation.
impl ShlAssign<u32> for Integer[src]
impl ShlAssign<u32> for Integerfn shl_assign(&mut self, rhs: u32)[src]
fn shl_assign(&mut self, rhs: u32)Performs the <<= operation.
impl<'t> ShlAssign<&'t u32> for Integer[src]
impl<'t> ShlAssign<&'t u32> for Integerfn shl_assign(&mut self, rhs: &u32)[src]
fn shl_assign(&mut self, rhs: &u32)Performs the <<= operation.
impl Shr<u32> for Integer[src]
impl Shr<u32> for Integertype Output = Integer
The resulting type after applying the >> operator.
fn shr(self, rhs: u32) -> Integer[src]
fn shr(self, rhs: u32) -> IntegerPerforms the >> operation.
impl<'t> Shr<&'t u32> for Integer[src]
impl<'t> Shr<&'t u32> for Integertype Output = Integer
The resulting type after applying the >> operator.
fn shr(self, rhs: &u32) -> Integer[src]
fn shr(self, rhs: &u32) -> IntegerPerforms the >> operation.
impl<'b> Shr<u32> for &'b Integer[src]
impl<'b> Shr<u32> for &'b Integertype Output = ShrU32Incomplete<'b>
The resulting type after applying the >> operator.
fn shr(self, rhs: u32) -> ShrU32Incomplete<'b>[src]
fn shr(self, rhs: u32) -> ShrU32Incomplete<'b>Performs the >> operation.
impl<'t, 'b> Shr<&'t u32> for &'b Integer[src]
impl<'t, 'b> Shr<&'t u32> for &'b Integertype Output = ShrU32Incomplete<'b>
The resulting type after applying the >> operator.
fn shr(self, rhs: &u32) -> ShrU32Incomplete<'b>[src]
fn shr(self, rhs: &u32) -> ShrU32Incomplete<'b>Performs the >> operation.
impl ShrAssign<u32> for Integer[src]
impl ShrAssign<u32> for Integerfn shr_assign(&mut self, rhs: u32)[src]
fn shr_assign(&mut self, rhs: u32)Performs the >>= operation.
impl<'t> ShrAssign<&'t u32> for Integer[src]
impl<'t> ShrAssign<&'t u32> for Integerfn shr_assign(&mut self, rhs: &u32)[src]
fn shr_assign(&mut self, rhs: &u32)Performs the >>= operation.
impl Pow<u32> for Integer[src]
impl Pow<u32> for Integertype Output = Integer
The resulting type after the power operation.
fn pow(self, rhs: u32) -> Integer[src]
fn pow(self, rhs: u32) -> IntegerPerforms the power operation. Read more
impl<'t> Pow<&'t u32> for Integer[src]
impl<'t> Pow<&'t u32> for Integertype Output = Integer
The resulting type after the power operation.
fn pow(self, rhs: &u32) -> Integer[src]
fn pow(self, rhs: &u32) -> IntegerPerforms the power operation. Read more
impl<'b> Pow<u32> for &'b Integer[src]
impl<'b> Pow<u32> for &'b Integertype Output = PowU32Incomplete<'b>
The resulting type after the power operation.
fn pow(self, rhs: u32) -> PowU32Incomplete<'b>[src]
fn pow(self, rhs: u32) -> PowU32Incomplete<'b>Performs the power operation. Read more
impl<'t, 'b> Pow<&'t u32> for &'b Integer[src]
impl<'t, 'b> Pow<&'t u32> for &'b Integertype Output = PowU32Incomplete<'b>
The resulting type after the power operation.
fn pow(self, rhs: &u32) -> PowU32Incomplete<'b>[src]
fn pow(self, rhs: &u32) -> PowU32Incomplete<'b>Performs the power operation. Read more
impl PowAssign<u32> for Integer[src]
impl PowAssign<u32> for Integerfn pow_assign(&mut self, rhs: u32)[src]
fn pow_assign(&mut self, rhs: u32)Peforms the power operation. Read more
impl<'t> PowAssign<&'t u32> for Integer[src]
impl<'t> PowAssign<&'t u32> for Integerfn pow_assign(&mut self, rhs: &u32)[src]
fn pow_assign(&mut self, rhs: &u32)Peforms the power operation. Read more
impl BitAnd<u32> for Integer[src]
impl BitAnd<u32> for Integertype Output = Integer
The resulting type after applying the & operator.
fn bitand(self, rhs: u32) -> Integer[src]
fn bitand(self, rhs: u32) -> IntegerPerforms the & operation.
impl<'t> BitAnd<&'t u32> for Integer[src]
impl<'t> BitAnd<&'t u32> for Integertype Output = Integer
The resulting type after applying the & operator.
fn bitand(self, rhs: &u32) -> Integer[src]
fn bitand(self, rhs: &u32) -> IntegerPerforms the & operation.
impl<'b> BitAnd<u32> for &'b Integer[src]
impl<'b> BitAnd<u32> for &'b Integertype Output = BitAndU32Incomplete<'b>
The resulting type after applying the & operator.
fn bitand(self, rhs: u32) -> BitAndU32Incomplete<'b>[src]
fn bitand(self, rhs: u32) -> BitAndU32Incomplete<'b>Performs the & operation.
impl<'t, 'b> BitAnd<&'t u32> for &'b Integer[src]
impl<'t, 'b> BitAnd<&'t u32> for &'b Integertype Output = BitAndU32Incomplete<'b>
The resulting type after applying the & operator.
fn bitand(self, rhs: &u32) -> BitAndU32Incomplete<'b>[src]
fn bitand(self, rhs: &u32) -> BitAndU32Incomplete<'b>Performs the & operation.
impl BitAndAssign<u32> for Integer[src]
impl BitAndAssign<u32> for Integerfn bitand_assign(&mut self, rhs: u32)[src]
fn bitand_assign(&mut self, rhs: u32)Performs the &= operation.
impl<'t> BitAndAssign<&'t u32> for Integer[src]
impl<'t> BitAndAssign<&'t u32> for Integerfn bitand_assign(&mut self, rhs: &u32)[src]
fn bitand_assign(&mut self, rhs: &u32)Performs the &= operation.
impl BitAnd<Integer> for u32[src]
impl BitAnd<Integer> for u32type Output = Integer
The resulting type after applying the & operator.
fn bitand(self, rhs: Integer) -> Integer[src]
fn bitand(self, rhs: Integer) -> IntegerPerforms the & operation.
impl<'b> BitAnd<&'b Integer> for u32[src]
impl<'b> BitAnd<&'b Integer> for u32type Output = BitAndU32Incomplete<'b>
The resulting type after applying the & operator.
fn bitand(self, rhs: &Integer) -> BitAndU32Incomplete[src]
fn bitand(self, rhs: &Integer) -> BitAndU32IncompletePerforms the & operation.
impl<'t> BitAnd<Integer> for &'t u32[src]
impl<'t> BitAnd<Integer> for &'t u32type Output = Integer
The resulting type after applying the & operator.
fn bitand(self, rhs: Integer) -> Integer[src]
fn bitand(self, rhs: Integer) -> IntegerPerforms the & operation.
impl<'b, 't> BitAnd<&'b Integer> for &'t u32[src]
impl<'b, 't> BitAnd<&'b Integer> for &'t u32type Output = BitAndU32Incomplete<'b>
The resulting type after applying the & operator.
fn bitand(self, rhs: &Integer) -> BitAndU32Incomplete[src]
fn bitand(self, rhs: &Integer) -> BitAndU32IncompletePerforms the & operation.
impl BitAndFrom<u32> for Integer[src]
impl BitAndFrom<u32> for Integerfn bitand_from(&mut self, lhs: u32)[src]
fn bitand_from(&mut self, lhs: u32)Peforms the AND operation. Read more
impl<'t> BitAndFrom<&'t u32> for Integer[src]
impl<'t> BitAndFrom<&'t u32> for Integerfn bitand_from(&mut self, lhs: &u32)[src]
fn bitand_from(&mut self, lhs: &u32)Peforms the AND operation. Read more
impl BitOr<u32> for Integer[src]
impl BitOr<u32> for Integertype Output = Integer
The resulting type after applying the | operator.
fn bitor(self, rhs: u32) -> Integer[src]
fn bitor(self, rhs: u32) -> IntegerPerforms the | operation.
impl<'t> BitOr<&'t u32> for Integer[src]
impl<'t> BitOr<&'t u32> for Integertype Output = Integer
The resulting type after applying the | operator.
fn bitor(self, rhs: &u32) -> Integer[src]
fn bitor(self, rhs: &u32) -> IntegerPerforms the | operation.
impl<'b> BitOr<u32> for &'b Integer[src]
impl<'b> BitOr<u32> for &'b Integertype Output = BitOrU32Incomplete<'b>
The resulting type after applying the | operator.
fn bitor(self, rhs: u32) -> BitOrU32Incomplete<'b>[src]
fn bitor(self, rhs: u32) -> BitOrU32Incomplete<'b>Performs the | operation.
impl<'t, 'b> BitOr<&'t u32> for &'b Integer[src]
impl<'t, 'b> BitOr<&'t u32> for &'b Integertype Output = BitOrU32Incomplete<'b>
The resulting type after applying the | operator.
fn bitor(self, rhs: &u32) -> BitOrU32Incomplete<'b>[src]
fn bitor(self, rhs: &u32) -> BitOrU32Incomplete<'b>Performs the | operation.
impl BitOrAssign<u32> for Integer[src]
impl BitOrAssign<u32> for Integerfn bitor_assign(&mut self, rhs: u32)[src]
fn bitor_assign(&mut self, rhs: u32)Performs the |= operation.
impl<'t> BitOrAssign<&'t u32> for Integer[src]
impl<'t> BitOrAssign<&'t u32> for Integerfn bitor_assign(&mut self, rhs: &u32)[src]
fn bitor_assign(&mut self, rhs: &u32)Performs the |= operation.
impl BitOr<Integer> for u32[src]
impl BitOr<Integer> for u32type Output = Integer
The resulting type after applying the | operator.
fn bitor(self, rhs: Integer) -> Integer[src]
fn bitor(self, rhs: Integer) -> IntegerPerforms the | operation.
impl<'b> BitOr<&'b Integer> for u32[src]
impl<'b> BitOr<&'b Integer> for u32type Output = BitOrU32Incomplete<'b>
The resulting type after applying the | operator.
fn bitor(self, rhs: &Integer) -> BitOrU32Incomplete[src]
fn bitor(self, rhs: &Integer) -> BitOrU32IncompletePerforms the | operation.
impl<'t> BitOr<Integer> for &'t u32[src]
impl<'t> BitOr<Integer> for &'t u32type Output = Integer
The resulting type after applying the | operator.
fn bitor(self, rhs: Integer) -> Integer[src]
fn bitor(self, rhs: Integer) -> IntegerPerforms the | operation.
impl<'b, 't> BitOr<&'b Integer> for &'t u32[src]
impl<'b, 't> BitOr<&'b Integer> for &'t u32type Output = BitOrU32Incomplete<'b>
The resulting type after applying the | operator.
fn bitor(self, rhs: &Integer) -> BitOrU32Incomplete[src]
fn bitor(self, rhs: &Integer) -> BitOrU32IncompletePerforms the | operation.
impl BitOrFrom<u32> for Integer[src]
impl BitOrFrom<u32> for Integerfn bitor_from(&mut self, lhs: u32)[src]
fn bitor_from(&mut self, lhs: u32)Peforms the OR operation. Read more
impl<'t> BitOrFrom<&'t u32> for Integer[src]
impl<'t> BitOrFrom<&'t u32> for Integerfn bitor_from(&mut self, lhs: &u32)[src]
fn bitor_from(&mut self, lhs: &u32)Peforms the OR operation. Read more
impl BitXor<u32> for Integer[src]
impl BitXor<u32> for Integertype Output = Integer
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: u32) -> Integer[src]
fn bitxor(self, rhs: u32) -> IntegerPerforms the ^ operation.
impl<'t> BitXor<&'t u32> for Integer[src]
impl<'t> BitXor<&'t u32> for Integertype Output = Integer
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: &u32) -> Integer[src]
fn bitxor(self, rhs: &u32) -> IntegerPerforms the ^ operation.
impl<'b> BitXor<u32> for &'b Integer[src]
impl<'b> BitXor<u32> for &'b Integertype Output = BitXorU32Incomplete<'b>
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: u32) -> BitXorU32Incomplete<'b>[src]
fn bitxor(self, rhs: u32) -> BitXorU32Incomplete<'b>Performs the ^ operation.
impl<'t, 'b> BitXor<&'t u32> for &'b Integer[src]
impl<'t, 'b> BitXor<&'t u32> for &'b Integertype Output = BitXorU32Incomplete<'b>
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: &u32) -> BitXorU32Incomplete<'b>[src]
fn bitxor(self, rhs: &u32) -> BitXorU32Incomplete<'b>Performs the ^ operation.
impl BitXorAssign<u32> for Integer[src]
impl BitXorAssign<u32> for Integerfn bitxor_assign(&mut self, rhs: u32)[src]
fn bitxor_assign(&mut self, rhs: u32)Performs the ^= operation.
impl<'t> BitXorAssign<&'t u32> for Integer[src]
impl<'t> BitXorAssign<&'t u32> for Integerfn bitxor_assign(&mut self, rhs: &u32)[src]
fn bitxor_assign(&mut self, rhs: &u32)Performs the ^= operation.
impl BitXor<Integer> for u32[src]
impl BitXor<Integer> for u32type Output = Integer
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: Integer) -> Integer[src]
fn bitxor(self, rhs: Integer) -> IntegerPerforms the ^ operation.
impl<'b> BitXor<&'b Integer> for u32[src]
impl<'b> BitXor<&'b Integer> for u32type Output = BitXorU32Incomplete<'b>
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: &Integer) -> BitXorU32Incomplete[src]
fn bitxor(self, rhs: &Integer) -> BitXorU32IncompletePerforms the ^ operation.
impl<'t> BitXor<Integer> for &'t u32[src]
impl<'t> BitXor<Integer> for &'t u32type Output = Integer
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: Integer) -> Integer[src]
fn bitxor(self, rhs: Integer) -> IntegerPerforms the ^ operation.
impl<'b, 't> BitXor<&'b Integer> for &'t u32[src]
impl<'b, 't> BitXor<&'b Integer> for &'t u32type Output = BitXorU32Incomplete<'b>
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: &Integer) -> BitXorU32Incomplete[src]
fn bitxor(self, rhs: &Integer) -> BitXorU32IncompletePerforms the ^ operation.
impl BitXorFrom<u32> for Integer[src]
impl BitXorFrom<u32> for Integerfn bitxor_from(&mut self, lhs: u32)[src]
fn bitxor_from(&mut self, lhs: u32)Peforms the XOR operation. Read more
impl<'t> BitXorFrom<&'t u32> for Integer[src]
impl<'t> BitXorFrom<&'t u32> for Integerfn bitxor_from(&mut self, lhs: &u32)[src]
fn bitxor_from(&mut self, lhs: &u32)Peforms the XOR operation. Read more
impl<T> Sum<T> for Integer where
Integer: AddAssign<T>, [src]
impl<T> Sum<T> for Integer where
Integer: AddAssign<T>, fn sum<I>(iter: I) -> Integer where
I: Iterator<Item = T>, [src]
fn sum<I>(iter: I) -> Integer where
I: Iterator<Item = T>, Method which takes an iterator and generates Self from the elements by "summing up" the items. Read more
impl<T> Product<T> for Integer where
Integer: MulAssign<T>, [src]
impl<T> Product<T> for Integer where
Integer: MulAssign<T>, fn product<I>(iter: I) -> Integer where
I: Iterator<Item = T>, [src]
fn product<I>(iter: I) -> Integer where
I: Iterator<Item = T>, Method which takes an iterator and generates Self from the elements by multiplying the items. Read more
impl Eq for Integer[src]
impl Eq for Integerimpl Ord for Integer[src]
impl Ord for Integerfn cmp(&self, other: &Integer) -> Ordering[src]
fn cmp(&self, other: &Integer) -> OrderingThis method returns an Ordering between self and other. Read more
fn max(self, other: Self) -> Self1.21.0[src]
fn max(self, other: Self) -> SelfCompares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self1.21.0[src]
fn min(self, other: Self) -> SelfCompares and returns the minimum of two values. Read more
impl PartialEq for Integer[src]
impl PartialEq for Integerfn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd for Integer[src]
impl PartialOrd for Integerfn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<i8> for Integer[src]
impl PartialEq<i8> for Integerfn eq(&self, other: &i8) -> bool[src]
fn eq(&self, other: &i8) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Integer> for i8[src]
impl PartialEq<Integer> for i8fn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<i8> for Integer[src]
impl PartialOrd<i8> for Integerfn partial_cmp(&self, other: &i8) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &i8) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for i8[src]
impl PartialOrd<Integer> for i8fn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<i16> for Integer[src]
impl PartialEq<i16> for Integerfn eq(&self, other: &i16) -> bool[src]
fn eq(&self, other: &i16) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Integer> for i16[src]
impl PartialEq<Integer> for i16fn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<i16> for Integer[src]
impl PartialOrd<i16> for Integerfn partial_cmp(&self, other: &i16) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &i16) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for i16[src]
impl PartialOrd<Integer> for i16fn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<i32> for Integer[src]
impl PartialEq<i32> for Integerfn eq(&self, other: &i32) -> bool[src]
fn eq(&self, other: &i32) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Integer> for i32[src]
impl PartialEq<Integer> for i32fn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<i32> for Integer[src]
impl PartialOrd<i32> for Integerfn partial_cmp(&self, other: &i32) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &i32) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for i32[src]
impl PartialOrd<Integer> for i32fn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<i64> for Integer[src]
impl PartialEq<i64> for Integerfn eq(&self, other: &i64) -> bool[src]
fn eq(&self, other: &i64) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Integer> for i64[src]
impl PartialEq<Integer> for i64fn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<i64> for Integer[src]
impl PartialOrd<i64> for Integerfn partial_cmp(&self, other: &i64) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &i64) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for i64[src]
impl PartialOrd<Integer> for i64fn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<i128> for Integer[src]
impl PartialEq<i128> for Integerfn eq(&self, other: &i128) -> bool[src]
fn eq(&self, other: &i128) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Integer> for i128[src]
impl PartialEq<Integer> for i128fn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<i128> for Integer[src]
impl PartialOrd<i128> for Integerfn partial_cmp(&self, other: &i128) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &i128) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for i128[src]
impl PartialOrd<Integer> for i128fn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<isize> for Integer[src]
impl PartialEq<isize> for Integerfn eq(&self, other: &isize) -> bool[src]
fn eq(&self, other: &isize) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Integer> for isize[src]
impl PartialEq<Integer> for isizefn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<isize> for Integer[src]
impl PartialOrd<isize> for Integerfn partial_cmp(&self, other: &isize) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &isize) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for isize[src]
impl PartialOrd<Integer> for isizefn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<u8> for Integer[src]
impl PartialEq<u8> for Integerfn eq(&self, other: &u8) -> bool[src]
fn eq(&self, other: &u8) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Integer> for u8[src]
impl PartialEq<Integer> for u8fn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<u8> for Integer[src]
impl PartialOrd<u8> for Integerfn partial_cmp(&self, other: &u8) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &u8) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for u8[src]
impl PartialOrd<Integer> for u8fn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<u16> for Integer[src]
impl PartialEq<u16> for Integerfn eq(&self, other: &u16) -> bool[src]
fn eq(&self, other: &u16) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Integer> for u16[src]
impl PartialEq<Integer> for u16fn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<u16> for Integer[src]
impl PartialOrd<u16> for Integerfn partial_cmp(&self, other: &u16) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &u16) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for u16[src]
impl PartialOrd<Integer> for u16fn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<u32> for Integer[src]
impl PartialEq<u32> for Integerfn eq(&self, other: &u32) -> bool[src]
fn eq(&self, other: &u32) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Integer> for u32[src]
impl PartialEq<Integer> for u32fn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<u32> for Integer[src]
impl PartialOrd<u32> for Integerfn partial_cmp(&self, other: &u32) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &u32) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for u32[src]
impl PartialOrd<Integer> for u32fn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<u64> for Integer[src]
impl PartialEq<u64> for Integerfn eq(&self, other: &u64) -> bool[src]
fn eq(&self, other: &u64) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Integer> for u64[src]
impl PartialEq<Integer> for u64fn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<u64> for Integer[src]
impl PartialOrd<u64> for Integerfn partial_cmp(&self, other: &u64) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &u64) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for u64[src]
impl PartialOrd<Integer> for u64fn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<u128> for Integer[src]
impl PartialEq<u128> for Integerfn eq(&self, other: &u128) -> bool[src]
fn eq(&self, other: &u128) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Integer> for u128[src]
impl PartialEq<Integer> for u128fn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<u128> for Integer[src]
impl PartialOrd<u128> for Integerfn partial_cmp(&self, other: &u128) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &u128) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for u128[src]
impl PartialOrd<Integer> for u128fn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<usize> for Integer[src]
impl PartialEq<usize> for Integerfn eq(&self, other: &usize) -> bool[src]
fn eq(&self, other: &usize) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Integer> for usize[src]
impl PartialEq<Integer> for usizefn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<usize> for Integer[src]
impl PartialOrd<usize> for Integerfn partial_cmp(&self, other: &usize) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &usize) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for usize[src]
impl PartialOrd<Integer> for usizefn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<f32> for Integer[src]
impl PartialEq<f32> for Integerfn eq(&self, other: &f32) -> bool[src]
fn eq(&self, other: &f32) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Integer> for f32[src]
impl PartialEq<Integer> for f32fn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<f32> for Integer[src]
impl PartialOrd<f32> for Integerfn partial_cmp(&self, other: &f32) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &f32) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for f32[src]
impl PartialOrd<Integer> for f32fn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<f64> for Integer[src]
impl PartialEq<f64> for Integerfn eq(&self, other: &f64) -> bool[src]
fn eq(&self, other: &f64) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Integer> for f64[src]
impl PartialEq<Integer> for f64fn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<f64> for Integer[src]
impl PartialOrd<f64> for Integerfn partial_cmp(&self, other: &f64) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &f64) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for f64[src]
impl PartialOrd<Integer> for f64fn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl DivRounding for Integer[src]
impl DivRounding for Integertype Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer[src]
fn div_trunc(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient towards zero.
fn div_ceil(self, rhs: Integer) -> Integer[src]
fn div_ceil(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient up.
fn div_floor(self, rhs: Integer) -> Integer[src]
fn div_floor(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient down.
fn div_euc(self, rhs: Integer) -> Integer[src]
fn div_euc(self, rhs: Integer) -> IntegerPerforms Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'i> DivRounding<&'i Integer> for Integer[src]
impl<'i> DivRounding<&'i Integer> for Integertype Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: &Integer) -> Integer[src]
fn div_trunc(self, rhs: &Integer) -> IntegerPerforms division, rounding the quotient towards zero.
fn div_ceil(self, rhs: &Integer) -> Integer[src]
fn div_ceil(self, rhs: &Integer) -> IntegerPerforms division, rounding the quotient up.
fn div_floor(self, rhs: &Integer) -> Integer[src]
fn div_floor(self, rhs: &Integer) -> IntegerPerforms division, rounding the quotient down.
fn div_euc(self, rhs: &Integer) -> Integer[src]
fn div_euc(self, rhs: &Integer) -> IntegerPerforms Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'i> DivRounding<Integer> for &'i Integer[src]
impl<'i> DivRounding<Integer> for &'i Integertype Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer[src]
fn div_trunc(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient towards zero.
fn div_ceil(self, rhs: Integer) -> Integer[src]
fn div_ceil(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient up.
fn div_floor(self, rhs: Integer) -> Integer[src]
fn div_floor(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient down.
fn div_euc(self, rhs: Integer) -> Integer[src]
fn div_euc(self, rhs: Integer) -> IntegerPerforms Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'i> DivRounding for &'i Integer[src]
impl<'i> DivRounding for &'i Integertype Output = DivRoundingIncomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingIncomplete[src]
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingIncompletePerforms division, rounding the quotient towards zero.
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingIncomplete[src]
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingIncompletePerforms division, rounding the quotient up.
fn div_floor(self, rhs: &'i Integer) -> DivRoundingIncomplete[src]
fn div_floor(self, rhs: &'i Integer) -> DivRoundingIncompletePerforms division, rounding the quotient down.
fn div_euc(self, rhs: &'i Integer) -> DivRoundingIncomplete[src]
fn div_euc(self, rhs: &'i Integer) -> DivRoundingIncompletePerforms Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl DivRoundingAssign for Integer[src]
impl DivRoundingAssign for Integerfn div_trunc_assign(&mut self, rhs: Integer)[src]
fn div_trunc_assign(&mut self, rhs: Integer)Performs division, rounding the quotient towards zero.
fn div_ceil_assign(&mut self, rhs: Integer)[src]
fn div_ceil_assign(&mut self, rhs: Integer)Performs division, rounding the quotient up.
fn div_floor_assign(&mut self, rhs: Integer)[src]
fn div_floor_assign(&mut self, rhs: Integer)Performs division, rounding the quotient down.
fn div_euc_assign(&mut self, rhs: Integer)[src]
fn div_euc_assign(&mut self, rhs: Integer)Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'i> DivRoundingAssign<&'i Integer> for Integer[src]
impl<'i> DivRoundingAssign<&'i Integer> for Integerfn div_trunc_assign(&mut self, rhs: &Integer)[src]
fn div_trunc_assign(&mut self, rhs: &Integer)Performs division, rounding the quotient towards zero.
fn div_ceil_assign(&mut self, rhs: &Integer)[src]
fn div_ceil_assign(&mut self, rhs: &Integer)Performs division, rounding the quotient up.
fn div_floor_assign(&mut self, rhs: &Integer)[src]
fn div_floor_assign(&mut self, rhs: &Integer)Performs division, rounding the quotient down.
fn div_euc_assign(&mut self, rhs: &Integer)[src]
fn div_euc_assign(&mut self, rhs: &Integer)Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl DivRoundingFrom for Integer[src]
impl DivRoundingFrom for Integerfn div_trunc_from(&mut self, lhs: Integer)[src]
fn div_trunc_from(&mut self, lhs: Integer)Performs division, rounding the quotient towards zero.
fn div_ceil_from(&mut self, lhs: Integer)[src]
fn div_ceil_from(&mut self, lhs: Integer)Performs division, rounding the quotient up.
fn div_floor_from(&mut self, lhs: Integer)[src]
fn div_floor_from(&mut self, lhs: Integer)Performs division, rounding the quotient down.
fn div_euc_from(&mut self, lhs: Integer)[src]
fn div_euc_from(&mut self, lhs: Integer)Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'i> DivRoundingFrom<&'i Integer> for Integer[src]
impl<'i> DivRoundingFrom<&'i Integer> for Integerfn div_trunc_from(&mut self, lhs: &Integer)[src]
fn div_trunc_from(&mut self, lhs: &Integer)Performs division, rounding the quotient towards zero.
fn div_ceil_from(&mut self, lhs: &Integer)[src]
fn div_ceil_from(&mut self, lhs: &Integer)Performs division, rounding the quotient up.
fn div_floor_from(&mut self, lhs: &Integer)[src]
fn div_floor_from(&mut self, lhs: &Integer)Performs division, rounding the quotient down.
fn div_euc_from(&mut self, lhs: &Integer)[src]
fn div_euc_from(&mut self, lhs: &Integer)Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl RemRounding for Integer[src]
impl RemRounding for Integertype Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer[src]
fn rem_trunc(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: Integer) -> Integer[src]
fn rem_ceil(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: Integer) -> Integer[src]
fn rem_floor(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: Integer) -> Integer[src]
fn rem_euc(self, rhs: Integer) -> IntegerFinds the positive remainder from Euclidean division.
impl<'i> RemRounding<&'i Integer> for Integer[src]
impl<'i> RemRounding<&'i Integer> for Integertype Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &Integer) -> Integer[src]
fn rem_trunc(self, rhs: &Integer) -> IntegerFinds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: &Integer) -> Integer[src]
fn rem_ceil(self, rhs: &Integer) -> IntegerFinds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: &Integer) -> Integer[src]
fn rem_floor(self, rhs: &Integer) -> IntegerFinds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: &Integer) -> Integer[src]
fn rem_euc(self, rhs: &Integer) -> IntegerFinds the positive remainder from Euclidean division.
impl<'i> RemRounding<Integer> for &'i Integer[src]
impl<'i> RemRounding<Integer> for &'i Integertype Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer[src]
fn rem_trunc(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: Integer) -> Integer[src]
fn rem_ceil(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: Integer) -> Integer[src]
fn rem_floor(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: Integer) -> Integer[src]
fn rem_euc(self, rhs: Integer) -> IntegerFinds the positive remainder from Euclidean division.
impl<'i> RemRounding for &'i Integer[src]
impl<'i> RemRounding for &'i Integertype Output = RemRoundingIncomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingIncomplete[src]
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingIncompleteFinds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingIncomplete[src]
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingIncompleteFinds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingIncomplete[src]
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingIncompleteFinds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingIncomplete[src]
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingIncompleteFinds the positive remainder from Euclidean division.
impl RemRoundingAssign for Integer[src]
impl RemRoundingAssign for Integerfn rem_trunc_assign(&mut self, rhs: Integer)[src]
fn rem_trunc_assign(&mut self, rhs: Integer)Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil_assign(&mut self, rhs: Integer)[src]
fn rem_ceil_assign(&mut self, rhs: Integer)Finds the remainder when the quotient is rounded up.
fn rem_floor_assign(&mut self, rhs: Integer)[src]
fn rem_floor_assign(&mut self, rhs: Integer)Finds the remainder when the quotient is rounded down.
fn rem_euc_assign(&mut self, rhs: Integer)[src]
fn rem_euc_assign(&mut self, rhs: Integer)Finds the positive remainder from Euclidean division.
impl<'i> RemRoundingAssign<&'i Integer> for Integer[src]
impl<'i> RemRoundingAssign<&'i Integer> for Integerfn rem_trunc_assign(&mut self, rhs: &Integer)[src]
fn rem_trunc_assign(&mut self, rhs: &Integer)Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil_assign(&mut self, rhs: &Integer)[src]
fn rem_ceil_assign(&mut self, rhs: &Integer)Finds the remainder when the quotient is rounded up.
fn rem_floor_assign(&mut self, rhs: &Integer)[src]
fn rem_floor_assign(&mut self, rhs: &Integer)Finds the remainder when the quotient is rounded down.
fn rem_euc_assign(&mut self, rhs: &Integer)[src]
fn rem_euc_assign(&mut self, rhs: &Integer)Finds the positive remainder from Euclidean division.
impl RemRoundingFrom for Integer[src]
impl RemRoundingFrom for Integerfn rem_trunc_from(&mut self, lhs: Integer)[src]
fn rem_trunc_from(&mut self, lhs: Integer)Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil_from(&mut self, lhs: Integer)[src]
fn rem_ceil_from(&mut self, lhs: Integer)Finds the remainder when the quotient is rounded up.
fn rem_floor_from(&mut self, lhs: Integer)[src]
fn rem_floor_from(&mut self, lhs: Integer)Finds the remainder when the quotient is rounded down.
fn rem_euc_from(&mut self, lhs: Integer)[src]
fn rem_euc_from(&mut self, lhs: Integer)Finds the positive remainder from Euclidean division.
impl<'i> RemRoundingFrom<&'i Integer> for Integer[src]
impl<'i> RemRoundingFrom<&'i Integer> for Integerfn rem_trunc_from(&mut self, lhs: &Integer)[src]
fn rem_trunc_from(&mut self, lhs: &Integer)Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil_from(&mut self, lhs: &Integer)[src]
fn rem_ceil_from(&mut self, lhs: &Integer)Finds the remainder when the quotient is rounded up.
fn rem_floor_from(&mut self, lhs: &Integer)[src]
fn rem_floor_from(&mut self, lhs: &Integer)Finds the remainder when the quotient is rounded down.
fn rem_euc_from(&mut self, lhs: &Integer)[src]
fn rem_euc_from(&mut self, lhs: &Integer)Finds the positive remainder from Euclidean division.
impl DivRounding<i32> for Integer[src]
impl DivRounding<i32> for Integertype Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: i32) -> Integer[src]
fn div_trunc(self, rhs: i32) -> IntegerPerforms division, rounding the quotient towards zero.
fn div_ceil(self, rhs: i32) -> Integer[src]
fn div_ceil(self, rhs: i32) -> IntegerPerforms division, rounding the quotient up.
fn div_floor(self, rhs: i32) -> Integer[src]
fn div_floor(self, rhs: i32) -> IntegerPerforms division, rounding the quotient down.
fn div_euc(self, rhs: i32) -> Integer[src]
fn div_euc(self, rhs: i32) -> IntegerPerforms Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'t> DivRounding<&'t i32> for Integer[src]
impl<'t> DivRounding<&'t i32> for Integertype Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: &i32) -> Integer[src]
fn div_trunc(self, rhs: &i32) -> IntegerPerforms division, rounding the quotient towards zero.
fn div_ceil(self, rhs: &i32) -> Integer[src]
fn div_ceil(self, rhs: &i32) -> IntegerPerforms division, rounding the quotient up.
fn div_floor(self, rhs: &i32) -> Integer[src]
fn div_floor(self, rhs: &i32) -> IntegerPerforms division, rounding the quotient down.
fn div_euc(self, rhs: &i32) -> Integer[src]
fn div_euc(self, rhs: &i32) -> IntegerPerforms Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'i> DivRounding<i32> for &'i Integer[src]
impl<'i> DivRounding<i32> for &'i Integertype Output = DivRoundingI32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: i32) -> DivRoundingI32Incomplete<'i>[src]
fn div_trunc(self, rhs: i32) -> DivRoundingI32Incomplete<'i>Performs division, rounding the quotient towards zero.
fn div_ceil(self, rhs: i32) -> DivRoundingI32Incomplete<'i>[src]
fn div_ceil(self, rhs: i32) -> DivRoundingI32Incomplete<'i>Performs division, rounding the quotient up.
fn div_floor(self, rhs: i32) -> DivRoundingI32Incomplete<'i>[src]
fn div_floor(self, rhs: i32) -> DivRoundingI32Incomplete<'i>Performs division, rounding the quotient down.
fn div_euc(self, rhs: i32) -> DivRoundingI32Incomplete<'i>[src]
fn div_euc(self, rhs: i32) -> DivRoundingI32Incomplete<'i>Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'t, 'i> DivRounding<&'t i32> for &'i Integer[src]
impl<'t, 'i> DivRounding<&'t i32> for &'i Integertype Output = DivRoundingI32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &i32) -> DivRoundingI32Incomplete<'i>[src]
fn div_trunc(self, rhs: &i32) -> DivRoundingI32Incomplete<'i>Performs division, rounding the quotient towards zero.
fn div_ceil(self, rhs: &i32) -> DivRoundingI32Incomplete<'i>[src]
fn div_ceil(self, rhs: &i32) -> DivRoundingI32Incomplete<'i>Performs division, rounding the quotient up.
fn div_floor(self, rhs: &i32) -> DivRoundingI32Incomplete<'i>[src]
fn div_floor(self, rhs: &i32) -> DivRoundingI32Incomplete<'i>Performs division, rounding the quotient down.
fn div_euc(self, rhs: &i32) -> DivRoundingI32Incomplete<'i>[src]
fn div_euc(self, rhs: &i32) -> DivRoundingI32Incomplete<'i>Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl DivRoundingAssign<i32> for Integer[src]
impl DivRoundingAssign<i32> for Integerfn div_trunc_assign(&mut self, rhs: i32)[src]
fn div_trunc_assign(&mut self, rhs: i32)Performs division, rounding the quotient towards zero.
fn div_ceil_assign(&mut self, rhs: i32)[src]
fn div_ceil_assign(&mut self, rhs: i32)Performs division, rounding the quotient up.
fn div_floor_assign(&mut self, rhs: i32)[src]
fn div_floor_assign(&mut self, rhs: i32)Performs division, rounding the quotient down.
fn div_euc_assign(&mut self, rhs: i32)[src]
fn div_euc_assign(&mut self, rhs: i32)Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'t> DivRoundingAssign<&'t i32> for Integer[src]
impl<'t> DivRoundingAssign<&'t i32> for Integerfn div_trunc_assign(&mut self, rhs: &i32)[src]
fn div_trunc_assign(&mut self, rhs: &i32)Performs division, rounding the quotient towards zero.
fn div_ceil_assign(&mut self, rhs: &i32)[src]
fn div_ceil_assign(&mut self, rhs: &i32)Performs division, rounding the quotient up.
fn div_floor_assign(&mut self, rhs: &i32)[src]
fn div_floor_assign(&mut self, rhs: &i32)Performs division, rounding the quotient down.
fn div_euc_assign(&mut self, rhs: &i32)[src]
fn div_euc_assign(&mut self, rhs: &i32)Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl DivRounding<Integer> for i32[src]
impl DivRounding<Integer> for i32type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer[src]
fn div_trunc(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient towards zero.
fn div_ceil(self, rhs: Integer) -> Integer[src]
fn div_ceil(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient up.
fn div_floor(self, rhs: Integer) -> Integer[src]
fn div_floor(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient down.
fn div_euc(self, rhs: Integer) -> Integer[src]
fn div_euc(self, rhs: Integer) -> IntegerPerforms Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'i> DivRounding<&'i Integer> for i32[src]
impl<'i> DivRounding<&'i Integer> for i32type Output = DivRoundingFromI32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &Integer) -> DivRoundingFromI32Incomplete[src]
fn div_trunc(self, rhs: &Integer) -> DivRoundingFromI32IncompletePerforms division, rounding the quotient towards zero.
fn div_ceil(self, rhs: &Integer) -> DivRoundingFromI32Incomplete[src]
fn div_ceil(self, rhs: &Integer) -> DivRoundingFromI32IncompletePerforms division, rounding the quotient up.
fn div_floor(self, rhs: &Integer) -> DivRoundingFromI32Incomplete[src]
fn div_floor(self, rhs: &Integer) -> DivRoundingFromI32IncompletePerforms division, rounding the quotient down.
fn div_euc(self, rhs: &Integer) -> DivRoundingFromI32Incomplete[src]
fn div_euc(self, rhs: &Integer) -> DivRoundingFromI32IncompletePerforms Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'t> DivRounding<Integer> for &'t i32[src]
impl<'t> DivRounding<Integer> for &'t i32type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer[src]
fn div_trunc(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient towards zero.
fn div_ceil(self, rhs: Integer) -> Integer[src]
fn div_ceil(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient up.
fn div_floor(self, rhs: Integer) -> Integer[src]
fn div_floor(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient down.
fn div_euc(self, rhs: Integer) -> Integer[src]
fn div_euc(self, rhs: Integer) -> IntegerPerforms Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'i, 't> DivRounding<&'i Integer> for &'t i32[src]
impl<'i, 't> DivRounding<&'i Integer> for &'t i32type Output = DivRoundingFromI32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingFromI32Incomplete<'i>[src]
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingFromI32Incomplete<'i>Performs division, rounding the quotient towards zero.
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingFromI32Incomplete<'i>[src]
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingFromI32Incomplete<'i>Performs division, rounding the quotient up.
fn div_floor(self, rhs: &'i Integer) -> DivRoundingFromI32Incomplete<'i>[src]
fn div_floor(self, rhs: &'i Integer) -> DivRoundingFromI32Incomplete<'i>Performs division, rounding the quotient down.
fn div_euc(self, rhs: &'i Integer) -> DivRoundingFromI32Incomplete<'i>[src]
fn div_euc(self, rhs: &'i Integer) -> DivRoundingFromI32Incomplete<'i>Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl DivRoundingFrom<i32> for Integer[src]
impl DivRoundingFrom<i32> for Integerfn div_trunc_from(&mut self, lhs: i32)[src]
fn div_trunc_from(&mut self, lhs: i32)Performs division, rounding the quotient towards zero.
fn div_ceil_from(&mut self, lhs: i32)[src]
fn div_ceil_from(&mut self, lhs: i32)Performs division, rounding the quotient up.
fn div_floor_from(&mut self, lhs: i32)[src]
fn div_floor_from(&mut self, lhs: i32)Performs division, rounding the quotient down.
fn div_euc_from(&mut self, lhs: i32)[src]
fn div_euc_from(&mut self, lhs: i32)Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'t> DivRoundingFrom<&'t i32> for Integer[src]
impl<'t> DivRoundingFrom<&'t i32> for Integerfn div_trunc_from(&mut self, lhs: &i32)[src]
fn div_trunc_from(&mut self, lhs: &i32)Performs division, rounding the quotient towards zero.
fn div_ceil_from(&mut self, lhs: &i32)[src]
fn div_ceil_from(&mut self, lhs: &i32)Performs division, rounding the quotient up.
fn div_floor_from(&mut self, lhs: &i32)[src]
fn div_floor_from(&mut self, lhs: &i32)Performs division, rounding the quotient down.
fn div_euc_from(&mut self, lhs: &i32)[src]
fn div_euc_from(&mut self, lhs: &i32)Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl RemRounding<i32> for Integer[src]
impl RemRounding<i32> for Integertype Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: i32) -> Integer[src]
fn rem_trunc(self, rhs: i32) -> IntegerFinds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: i32) -> Integer[src]
fn rem_ceil(self, rhs: i32) -> IntegerFinds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: i32) -> Integer[src]
fn rem_floor(self, rhs: i32) -> IntegerFinds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: i32) -> Integer[src]
fn rem_euc(self, rhs: i32) -> IntegerFinds the positive remainder from Euclidean division.
impl<'t> RemRounding<&'t i32> for Integer[src]
impl<'t> RemRounding<&'t i32> for Integertype Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &i32) -> Integer[src]
fn rem_trunc(self, rhs: &i32) -> IntegerFinds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: &i32) -> Integer[src]
fn rem_ceil(self, rhs: &i32) -> IntegerFinds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: &i32) -> Integer[src]
fn rem_floor(self, rhs: &i32) -> IntegerFinds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: &i32) -> Integer[src]
fn rem_euc(self, rhs: &i32) -> IntegerFinds the positive remainder from Euclidean division.
impl<'i> RemRounding<i32> for &'i Integer[src]
impl<'i> RemRounding<i32> for &'i Integertype Output = RemRoundingI32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: i32) -> RemRoundingI32Incomplete<'i>[src]
fn rem_trunc(self, rhs: i32) -> RemRoundingI32Incomplete<'i>Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: i32) -> RemRoundingI32Incomplete<'i>[src]
fn rem_ceil(self, rhs: i32) -> RemRoundingI32Incomplete<'i>Finds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: i32) -> RemRoundingI32Incomplete<'i>[src]
fn rem_floor(self, rhs: i32) -> RemRoundingI32Incomplete<'i>Finds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: i32) -> RemRoundingI32Incomplete<'i>[src]
fn rem_euc(self, rhs: i32) -> RemRoundingI32Incomplete<'i>Finds the positive remainder from Euclidean division.
impl<'t, 'i> RemRounding<&'t i32> for &'i Integer[src]
impl<'t, 'i> RemRounding<&'t i32> for &'i Integertype Output = RemRoundingI32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &i32) -> RemRoundingI32Incomplete<'i>[src]
fn rem_trunc(self, rhs: &i32) -> RemRoundingI32Incomplete<'i>Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: &i32) -> RemRoundingI32Incomplete<'i>[src]
fn rem_ceil(self, rhs: &i32) -> RemRoundingI32Incomplete<'i>Finds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: &i32) -> RemRoundingI32Incomplete<'i>[src]
fn rem_floor(self, rhs: &i32) -> RemRoundingI32Incomplete<'i>Finds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: &i32) -> RemRoundingI32Incomplete<'i>[src]
fn rem_euc(self, rhs: &i32) -> RemRoundingI32Incomplete<'i>Finds the positive remainder from Euclidean division.
impl RemRoundingAssign<i32> for Integer[src]
impl RemRoundingAssign<i32> for Integerfn rem_trunc_assign(&mut self, rhs: i32)[src]
fn rem_trunc_assign(&mut self, rhs: i32)Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil_assign(&mut self, rhs: i32)[src]
fn rem_ceil_assign(&mut self, rhs: i32)Finds the remainder when the quotient is rounded up.
fn rem_floor_assign(&mut self, rhs: i32)[src]
fn rem_floor_assign(&mut self, rhs: i32)Finds the remainder when the quotient is rounded down.
fn rem_euc_assign(&mut self, rhs: i32)[src]
fn rem_euc_assign(&mut self, rhs: i32)Finds the positive remainder from Euclidean division.
impl<'t> RemRoundingAssign<&'t i32> for Integer[src]
impl<'t> RemRoundingAssign<&'t i32> for Integerfn rem_trunc_assign(&mut self, rhs: &i32)[src]
fn rem_trunc_assign(&mut self, rhs: &i32)Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil_assign(&mut self, rhs: &i32)[src]
fn rem_ceil_assign(&mut self, rhs: &i32)Finds the remainder when the quotient is rounded up.
fn rem_floor_assign(&mut self, rhs: &i32)[src]
fn rem_floor_assign(&mut self, rhs: &i32)Finds the remainder when the quotient is rounded down.
fn rem_euc_assign(&mut self, rhs: &i32)[src]
fn rem_euc_assign(&mut self, rhs: &i32)Finds the positive remainder from Euclidean division.
impl RemRounding<Integer> for i32[src]
impl RemRounding<Integer> for i32type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer[src]
fn rem_trunc(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: Integer) -> Integer[src]
fn rem_ceil(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: Integer) -> Integer[src]
fn rem_floor(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: Integer) -> Integer[src]
fn rem_euc(self, rhs: Integer) -> IntegerFinds the positive remainder from Euclidean division.
impl<'i> RemRounding<&'i Integer> for i32[src]
impl<'i> RemRounding<&'i Integer> for i32type Output = RemRoundingFromI32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &Integer) -> RemRoundingFromI32Incomplete[src]
fn rem_trunc(self, rhs: &Integer) -> RemRoundingFromI32IncompleteFinds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: &Integer) -> RemRoundingFromI32Incomplete[src]
fn rem_ceil(self, rhs: &Integer) -> RemRoundingFromI32IncompleteFinds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: &Integer) -> RemRoundingFromI32Incomplete[src]
fn rem_floor(self, rhs: &Integer) -> RemRoundingFromI32IncompleteFinds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: &Integer) -> RemRoundingFromI32Incomplete[src]
fn rem_euc(self, rhs: &Integer) -> RemRoundingFromI32IncompleteFinds the positive remainder from Euclidean division.
impl<'t> RemRounding<Integer> for &'t i32[src]
impl<'t> RemRounding<Integer> for &'t i32type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer[src]
fn rem_trunc(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: Integer) -> Integer[src]
fn rem_ceil(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: Integer) -> Integer[src]
fn rem_floor(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: Integer) -> Integer[src]
fn rem_euc(self, rhs: Integer) -> IntegerFinds the positive remainder from Euclidean division.
impl<'i, 't> RemRounding<&'i Integer> for &'t i32[src]
impl<'i, 't> RemRounding<&'i Integer> for &'t i32type Output = RemRoundingFromI32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingFromI32Incomplete<'i>[src]
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingFromI32Incomplete<'i>Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingFromI32Incomplete<'i>[src]
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingFromI32Incomplete<'i>Finds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingFromI32Incomplete<'i>[src]
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingFromI32Incomplete<'i>Finds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingFromI32Incomplete<'i>[src]
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingFromI32Incomplete<'i>Finds the positive remainder from Euclidean division.
impl RemRoundingFrom<i32> for Integer[src]
impl RemRoundingFrom<i32> for Integerfn rem_trunc_from(&mut self, lhs: i32)[src]
fn rem_trunc_from(&mut self, lhs: i32)Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil_from(&mut self, lhs: i32)[src]
fn rem_ceil_from(&mut self, lhs: i32)Finds the remainder when the quotient is rounded up.
fn rem_floor_from(&mut self, lhs: i32)[src]
fn rem_floor_from(&mut self, lhs: i32)Finds the remainder when the quotient is rounded down.
fn rem_euc_from(&mut self, lhs: i32)[src]
fn rem_euc_from(&mut self, lhs: i32)Finds the positive remainder from Euclidean division.
impl<'t> RemRoundingFrom<&'t i32> for Integer[src]
impl<'t> RemRoundingFrom<&'t i32> for Integerfn rem_trunc_from(&mut self, lhs: &i32)[src]
fn rem_trunc_from(&mut self, lhs: &i32)Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil_from(&mut self, lhs: &i32)[src]
fn rem_ceil_from(&mut self, lhs: &i32)Finds the remainder when the quotient is rounded up.
fn rem_floor_from(&mut self, lhs: &i32)[src]
fn rem_floor_from(&mut self, lhs: &i32)Finds the remainder when the quotient is rounded down.
fn rem_euc_from(&mut self, lhs: &i32)[src]
fn rem_euc_from(&mut self, lhs: &i32)Finds the positive remainder from Euclidean division.
impl DivRounding<u32> for Integer[src]
impl DivRounding<u32> for Integertype Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: u32) -> Integer[src]
fn div_trunc(self, rhs: u32) -> IntegerPerforms division, rounding the quotient towards zero.
fn div_ceil(self, rhs: u32) -> Integer[src]
fn div_ceil(self, rhs: u32) -> IntegerPerforms division, rounding the quotient up.
fn div_floor(self, rhs: u32) -> Integer[src]
fn div_floor(self, rhs: u32) -> IntegerPerforms division, rounding the quotient down.
fn div_euc(self, rhs: u32) -> Integer[src]
fn div_euc(self, rhs: u32) -> IntegerPerforms Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'t> DivRounding<&'t u32> for Integer[src]
impl<'t> DivRounding<&'t u32> for Integertype Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: &u32) -> Integer[src]
fn div_trunc(self, rhs: &u32) -> IntegerPerforms division, rounding the quotient towards zero.
fn div_ceil(self, rhs: &u32) -> Integer[src]
fn div_ceil(self, rhs: &u32) -> IntegerPerforms division, rounding the quotient up.
fn div_floor(self, rhs: &u32) -> Integer[src]
fn div_floor(self, rhs: &u32) -> IntegerPerforms division, rounding the quotient down.
fn div_euc(self, rhs: &u32) -> Integer[src]
fn div_euc(self, rhs: &u32) -> IntegerPerforms Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'i> DivRounding<u32> for &'i Integer[src]
impl<'i> DivRounding<u32> for &'i Integertype Output = DivRoundingU32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: u32) -> DivRoundingU32Incomplete<'i>[src]
fn div_trunc(self, rhs: u32) -> DivRoundingU32Incomplete<'i>Performs division, rounding the quotient towards zero.
fn div_ceil(self, rhs: u32) -> DivRoundingU32Incomplete<'i>[src]
fn div_ceil(self, rhs: u32) -> DivRoundingU32Incomplete<'i>Performs division, rounding the quotient up.
fn div_floor(self, rhs: u32) -> DivRoundingU32Incomplete<'i>[src]
fn div_floor(self, rhs: u32) -> DivRoundingU32Incomplete<'i>Performs division, rounding the quotient down.
fn div_euc(self, rhs: u32) -> DivRoundingU32Incomplete<'i>[src]
fn div_euc(self, rhs: u32) -> DivRoundingU32Incomplete<'i>Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'t, 'i> DivRounding<&'t u32> for &'i Integer[src]
impl<'t, 'i> DivRounding<&'t u32> for &'i Integertype Output = DivRoundingU32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &u32) -> DivRoundingU32Incomplete<'i>[src]
fn div_trunc(self, rhs: &u32) -> DivRoundingU32Incomplete<'i>Performs division, rounding the quotient towards zero.
fn div_ceil(self, rhs: &u32) -> DivRoundingU32Incomplete<'i>[src]
fn div_ceil(self, rhs: &u32) -> DivRoundingU32Incomplete<'i>Performs division, rounding the quotient up.
fn div_floor(self, rhs: &u32) -> DivRoundingU32Incomplete<'i>[src]
fn div_floor(self, rhs: &u32) -> DivRoundingU32Incomplete<'i>Performs division, rounding the quotient down.
fn div_euc(self, rhs: &u32) -> DivRoundingU32Incomplete<'i>[src]
fn div_euc(self, rhs: &u32) -> DivRoundingU32Incomplete<'i>Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl DivRoundingAssign<u32> for Integer[src]
impl DivRoundingAssign<u32> for Integerfn div_trunc_assign(&mut self, rhs: u32)[src]
fn div_trunc_assign(&mut self, rhs: u32)Performs division, rounding the quotient towards zero.
fn div_ceil_assign(&mut self, rhs: u32)[src]
fn div_ceil_assign(&mut self, rhs: u32)Performs division, rounding the quotient up.
fn div_floor_assign(&mut self, rhs: u32)[src]
fn div_floor_assign(&mut self, rhs: u32)Performs division, rounding the quotient down.
fn div_euc_assign(&mut self, rhs: u32)[src]
fn div_euc_assign(&mut self, rhs: u32)Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'t> DivRoundingAssign<&'t u32> for Integer[src]
impl<'t> DivRoundingAssign<&'t u32> for Integerfn div_trunc_assign(&mut self, rhs: &u32)[src]
fn div_trunc_assign(&mut self, rhs: &u32)Performs division, rounding the quotient towards zero.
fn div_ceil_assign(&mut self, rhs: &u32)[src]
fn div_ceil_assign(&mut self, rhs: &u32)Performs division, rounding the quotient up.
fn div_floor_assign(&mut self, rhs: &u32)[src]
fn div_floor_assign(&mut self, rhs: &u32)Performs division, rounding the quotient down.
fn div_euc_assign(&mut self, rhs: &u32)[src]
fn div_euc_assign(&mut self, rhs: &u32)Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl DivRounding<Integer> for u32[src]
impl DivRounding<Integer> for u32type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer[src]
fn div_trunc(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient towards zero.
fn div_ceil(self, rhs: Integer) -> Integer[src]
fn div_ceil(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient up.
fn div_floor(self, rhs: Integer) -> Integer[src]
fn div_floor(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient down.
fn div_euc(self, rhs: Integer) -> Integer[src]
fn div_euc(self, rhs: Integer) -> IntegerPerforms Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'i> DivRounding<&'i Integer> for u32[src]
impl<'i> DivRounding<&'i Integer> for u32type Output = DivRoundingFromU32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &Integer) -> DivRoundingFromU32Incomplete[src]
fn div_trunc(self, rhs: &Integer) -> DivRoundingFromU32IncompletePerforms division, rounding the quotient towards zero.
fn div_ceil(self, rhs: &Integer) -> DivRoundingFromU32Incomplete[src]
fn div_ceil(self, rhs: &Integer) -> DivRoundingFromU32IncompletePerforms division, rounding the quotient up.
fn div_floor(self, rhs: &Integer) -> DivRoundingFromU32Incomplete[src]
fn div_floor(self, rhs: &Integer) -> DivRoundingFromU32IncompletePerforms division, rounding the quotient down.
fn div_euc(self, rhs: &Integer) -> DivRoundingFromU32Incomplete[src]
fn div_euc(self, rhs: &Integer) -> DivRoundingFromU32IncompletePerforms Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'t> DivRounding<Integer> for &'t u32[src]
impl<'t> DivRounding<Integer> for &'t u32type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer[src]
fn div_trunc(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient towards zero.
fn div_ceil(self, rhs: Integer) -> Integer[src]
fn div_ceil(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient up.
fn div_floor(self, rhs: Integer) -> Integer[src]
fn div_floor(self, rhs: Integer) -> IntegerPerforms division, rounding the quotient down.
fn div_euc(self, rhs: Integer) -> Integer[src]
fn div_euc(self, rhs: Integer) -> IntegerPerforms Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'i, 't> DivRounding<&'i Integer> for &'t u32[src]
impl<'i, 't> DivRounding<&'i Integer> for &'t u32type Output = DivRoundingFromU32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingFromU32Incomplete<'i>[src]
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingFromU32Incomplete<'i>Performs division, rounding the quotient towards zero.
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingFromU32Incomplete<'i>[src]
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingFromU32Incomplete<'i>Performs division, rounding the quotient up.
fn div_floor(self, rhs: &'i Integer) -> DivRoundingFromU32Incomplete<'i>[src]
fn div_floor(self, rhs: &'i Integer) -> DivRoundingFromU32Incomplete<'i>Performs division, rounding the quotient down.
fn div_euc(self, rhs: &'i Integer) -> DivRoundingFromU32Incomplete<'i>[src]
fn div_euc(self, rhs: &'i Integer) -> DivRoundingFromU32Incomplete<'i>Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl DivRoundingFrom<u32> for Integer[src]
impl DivRoundingFrom<u32> for Integerfn div_trunc_from(&mut self, lhs: u32)[src]
fn div_trunc_from(&mut self, lhs: u32)Performs division, rounding the quotient towards zero.
fn div_ceil_from(&mut self, lhs: u32)[src]
fn div_ceil_from(&mut self, lhs: u32)Performs division, rounding the quotient up.
fn div_floor_from(&mut self, lhs: u32)[src]
fn div_floor_from(&mut self, lhs: u32)Performs division, rounding the quotient down.
fn div_euc_from(&mut self, lhs: u32)[src]
fn div_euc_from(&mut self, lhs: u32)Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl<'t> DivRoundingFrom<&'t u32> for Integer[src]
impl<'t> DivRoundingFrom<&'t u32> for Integerfn div_trunc_from(&mut self, lhs: &u32)[src]
fn div_trunc_from(&mut self, lhs: &u32)Performs division, rounding the quotient towards zero.
fn div_ceil_from(&mut self, lhs: &u32)[src]
fn div_ceil_from(&mut self, lhs: &u32)Performs division, rounding the quotient up.
fn div_floor_from(&mut self, lhs: &u32)[src]
fn div_floor_from(&mut self, lhs: &u32)Performs division, rounding the quotient down.
fn div_euc_from(&mut self, lhs: &u32)[src]
fn div_euc_from(&mut self, lhs: &u32)Performs Euclidean division, rounding the quotient so that the remainder cannot be negative. Read more
impl RemRounding<u32> for Integer[src]
impl RemRounding<u32> for Integertype Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: u32) -> Integer[src]
fn rem_trunc(self, rhs: u32) -> IntegerFinds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: u32) -> Integer[src]
fn rem_ceil(self, rhs: u32) -> IntegerFinds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: u32) -> Integer[src]
fn rem_floor(self, rhs: u32) -> IntegerFinds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: u32) -> Integer[src]
fn rem_euc(self, rhs: u32) -> IntegerFinds the positive remainder from Euclidean division.
impl<'t> RemRounding<&'t u32> for Integer[src]
impl<'t> RemRounding<&'t u32> for Integertype Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &u32) -> Integer[src]
fn rem_trunc(self, rhs: &u32) -> IntegerFinds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: &u32) -> Integer[src]
fn rem_ceil(self, rhs: &u32) -> IntegerFinds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: &u32) -> Integer[src]
fn rem_floor(self, rhs: &u32) -> IntegerFinds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: &u32) -> Integer[src]
fn rem_euc(self, rhs: &u32) -> IntegerFinds the positive remainder from Euclidean division.
impl<'i> RemRounding<u32> for &'i Integer[src]
impl<'i> RemRounding<u32> for &'i Integertype Output = RemRoundingU32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: u32) -> RemRoundingU32Incomplete<'i>[src]
fn rem_trunc(self, rhs: u32) -> RemRoundingU32Incomplete<'i>Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: u32) -> RemRoundingU32Incomplete<'i>[src]
fn rem_ceil(self, rhs: u32) -> RemRoundingU32Incomplete<'i>Finds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: u32) -> RemRoundingU32Incomplete<'i>[src]
fn rem_floor(self, rhs: u32) -> RemRoundingU32Incomplete<'i>Finds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: u32) -> RemRoundingU32Incomplete<'i>[src]
fn rem_euc(self, rhs: u32) -> RemRoundingU32Incomplete<'i>Finds the positive remainder from Euclidean division.
impl<'t, 'i> RemRounding<&'t u32> for &'i Integer[src]
impl<'t, 'i> RemRounding<&'t u32> for &'i Integertype Output = RemRoundingU32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &u32) -> RemRoundingU32Incomplete<'i>[src]
fn rem_trunc(self, rhs: &u32) -> RemRoundingU32Incomplete<'i>Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: &u32) -> RemRoundingU32Incomplete<'i>[src]
fn rem_ceil(self, rhs: &u32) -> RemRoundingU32Incomplete<'i>Finds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: &u32) -> RemRoundingU32Incomplete<'i>[src]
fn rem_floor(self, rhs: &u32) -> RemRoundingU32Incomplete<'i>Finds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: &u32) -> RemRoundingU32Incomplete<'i>[src]
fn rem_euc(self, rhs: &u32) -> RemRoundingU32Incomplete<'i>Finds the positive remainder from Euclidean division.
impl RemRoundingAssign<u32> for Integer[src]
impl RemRoundingAssign<u32> for Integerfn rem_trunc_assign(&mut self, rhs: u32)[src]
fn rem_trunc_assign(&mut self, rhs: u32)Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil_assign(&mut self, rhs: u32)[src]
fn rem_ceil_assign(&mut self, rhs: u32)Finds the remainder when the quotient is rounded up.
fn rem_floor_assign(&mut self, rhs: u32)[src]
fn rem_floor_assign(&mut self, rhs: u32)Finds the remainder when the quotient is rounded down.
fn rem_euc_assign(&mut self, rhs: u32)[src]
fn rem_euc_assign(&mut self, rhs: u32)Finds the positive remainder from Euclidean division.
impl<'t> RemRoundingAssign<&'t u32> for Integer[src]
impl<'t> RemRoundingAssign<&'t u32> for Integerfn rem_trunc_assign(&mut self, rhs: &u32)[src]
fn rem_trunc_assign(&mut self, rhs: &u32)Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil_assign(&mut self, rhs: &u32)[src]
fn rem_ceil_assign(&mut self, rhs: &u32)Finds the remainder when the quotient is rounded up.
fn rem_floor_assign(&mut self, rhs: &u32)[src]
fn rem_floor_assign(&mut self, rhs: &u32)Finds the remainder when the quotient is rounded down.
fn rem_euc_assign(&mut self, rhs: &u32)[src]
fn rem_euc_assign(&mut self, rhs: &u32)Finds the positive remainder from Euclidean division.
impl RemRounding<Integer> for u32[src]
impl RemRounding<Integer> for u32type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer[src]
fn rem_trunc(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: Integer) -> Integer[src]
fn rem_ceil(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: Integer) -> Integer[src]
fn rem_floor(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: Integer) -> Integer[src]
fn rem_euc(self, rhs: Integer) -> IntegerFinds the positive remainder from Euclidean division.
impl<'i> RemRounding<&'i Integer> for u32[src]
impl<'i> RemRounding<&'i Integer> for u32type Output = RemRoundingFromU32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &Integer) -> RemRoundingFromU32Incomplete[src]
fn rem_trunc(self, rhs: &Integer) -> RemRoundingFromU32IncompleteFinds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: &Integer) -> RemRoundingFromU32Incomplete[src]
fn rem_ceil(self, rhs: &Integer) -> RemRoundingFromU32IncompleteFinds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: &Integer) -> RemRoundingFromU32Incomplete[src]
fn rem_floor(self, rhs: &Integer) -> RemRoundingFromU32IncompleteFinds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: &Integer) -> RemRoundingFromU32Incomplete[src]
fn rem_euc(self, rhs: &Integer) -> RemRoundingFromU32IncompleteFinds the positive remainder from Euclidean division.
impl<'t> RemRounding<Integer> for &'t u32[src]
impl<'t> RemRounding<Integer> for &'t u32type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer[src]
fn rem_trunc(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: Integer) -> Integer[src]
fn rem_ceil(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: Integer) -> Integer[src]
fn rem_floor(self, rhs: Integer) -> IntegerFinds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: Integer) -> Integer[src]
fn rem_euc(self, rhs: Integer) -> IntegerFinds the positive remainder from Euclidean division.
impl<'i, 't> RemRounding<&'i Integer> for &'t u32[src]
impl<'i, 't> RemRounding<&'i Integer> for &'t u32type Output = RemRoundingFromU32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingFromU32Incomplete<'i>[src]
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingFromU32Incomplete<'i>Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingFromU32Incomplete<'i>[src]
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingFromU32Incomplete<'i>Finds the remainder when the quotient is rounded up.
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingFromU32Incomplete<'i>[src]
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingFromU32Incomplete<'i>Finds the remainder when the quotient is rounded down.
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingFromU32Incomplete<'i>[src]
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingFromU32Incomplete<'i>Finds the positive remainder from Euclidean division.
impl RemRoundingFrom<u32> for Integer[src]
impl RemRoundingFrom<u32> for Integerfn rem_trunc_from(&mut self, lhs: u32)[src]
fn rem_trunc_from(&mut self, lhs: u32)Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil_from(&mut self, lhs: u32)[src]
fn rem_ceil_from(&mut self, lhs: u32)Finds the remainder when the quotient is rounded up.
fn rem_floor_from(&mut self, lhs: u32)[src]
fn rem_floor_from(&mut self, lhs: u32)Finds the remainder when the quotient is rounded down.
fn rem_euc_from(&mut self, lhs: u32)[src]
fn rem_euc_from(&mut self, lhs: u32)Finds the positive remainder from Euclidean division.
impl<'t> RemRoundingFrom<&'t u32> for Integer[src]
impl<'t> RemRoundingFrom<&'t u32> for Integerfn rem_trunc_from(&mut self, lhs: &u32)[src]
fn rem_trunc_from(&mut self, lhs: &u32)Finds the remainder when the quotient is rounded towards zero.
fn rem_ceil_from(&mut self, lhs: &u32)[src]
fn rem_ceil_from(&mut self, lhs: &u32)Finds the remainder when the quotient is rounded up.
fn rem_floor_from(&mut self, lhs: &u32)[src]
fn rem_floor_from(&mut self, lhs: &u32)Finds the remainder when the quotient is rounded down.
fn rem_euc_from(&mut self, lhs: &u32)[src]
fn rem_euc_from(&mut self, lhs: &u32)Finds the positive remainder from Euclidean division.
impl Serialize for Integer[src]
impl Serialize for Integerfn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where
S: Serializer, [src]
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where
S: Serializer, Serialize this value into the given Serde serializer. Read more
impl<'de> Deserialize<'de> for Integer[src]
impl<'de> Deserialize<'de> for Integerfn deserialize<D>(deserializer: D) -> Result<Integer, D::Error> where
D: Deserializer<'de>, [src]
fn deserialize<D>(deserializer: D) -> Result<Integer, D::Error> where
D: Deserializer<'de>, Deserialize this value from the given Serde deserializer. Read more
fn deserialize_in_place<D>(
deserializer: D,
place: &mut Integer
) -> Result<(), D::Error> where
D: Deserializer<'de>, [src]
fn deserialize_in_place<D>(
deserializer: D,
place: &mut Integer
) -> Result<(), D::Error> where
D: Deserializer<'de>, impl Default for Integer[src]
impl Default for Integerimpl Clone for Integer[src]
impl Clone for Integerfn clone(&self) -> Integer[src]
fn clone(&self) -> IntegerReturns a copy of the value. Read more
fn clone_from(&mut self, source: &Integer)[src]
fn clone_from(&mut self, source: &Integer)Performs copy-assignment from source. Read more
impl Drop for Integer[src]
impl Drop for Integerimpl Hash for Integer[src]
impl Hash for Integerfn hash<H>(&self, state: &mut H) where
H: Hasher, [src]
fn hash<H>(&self, state: &mut H) where
H: Hasher, Feeds this value into the given [Hasher]. Read more
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, 1.3.0[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, Feeds a slice of this type into the given [Hasher]. Read more
impl Assign for Integer[src]
impl Assign for Integerimpl<'a> Assign<&'a Integer> for Integer[src]
impl<'a> Assign<&'a Integer> for Integerimpl<'a> From<&'a Integer> for Integer[src]
impl<'a> From<&'a Integer> for Integerimpl TryFrom<Integer> for i8[src]
impl TryFrom<Integer> for i8type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl<'a> TryFrom<&'a Integer> for i8[src]
impl<'a> TryFrom<&'a Integer> for i8type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl TryFrom<Integer> for i16[src]
impl TryFrom<Integer> for i16type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl<'a> TryFrom<&'a Integer> for i16[src]
impl<'a> TryFrom<&'a Integer> for i16type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl TryFrom<Integer> for i32[src]
impl TryFrom<Integer> for i32type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl<'a> TryFrom<&'a Integer> for i32[src]
impl<'a> TryFrom<&'a Integer> for i32type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl TryFrom<Integer> for i64[src]
impl TryFrom<Integer> for i64type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl<'a> TryFrom<&'a Integer> for i64[src]
impl<'a> TryFrom<&'a Integer> for i64type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl TryFrom<Integer> for i128[src]
impl TryFrom<Integer> for i128type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl<'a> TryFrom<&'a Integer> for i128[src]
impl<'a> TryFrom<&'a Integer> for i128type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl TryFrom<Integer> for isize[src]
impl TryFrom<Integer> for isizetype Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl<'a> TryFrom<&'a Integer> for isize[src]
impl<'a> TryFrom<&'a Integer> for isizetype Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl TryFrom<Integer> for u8[src]
impl TryFrom<Integer> for u8type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl<'a> TryFrom<&'a Integer> for u8[src]
impl<'a> TryFrom<&'a Integer> for u8type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl TryFrom<Integer> for u16[src]
impl TryFrom<Integer> for u16type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl<'a> TryFrom<&'a Integer> for u16[src]
impl<'a> TryFrom<&'a Integer> for u16type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl TryFrom<Integer> for u32[src]
impl TryFrom<Integer> for u32type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl<'a> TryFrom<&'a Integer> for u32[src]
impl<'a> TryFrom<&'a Integer> for u32type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl TryFrom<Integer> for u64[src]
impl TryFrom<Integer> for u64type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl<'a> TryFrom<&'a Integer> for u64[src]
impl<'a> TryFrom<&'a Integer> for u64type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl TryFrom<Integer> for u128[src]
impl TryFrom<Integer> for u128type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl<'a> TryFrom<&'a Integer> for u128[src]
impl<'a> TryFrom<&'a Integer> for u128type Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl TryFrom<Integer> for usize[src]
impl TryFrom<Integer> for usizetype Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl<'a> TryFrom<&'a Integer> for usize[src]
impl<'a> TryFrom<&'a Integer> for usizetype Error = TryFromIntegerError
try_from)The type returned in the event of a conversion error.
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>[src]
fn try_from(value: &Integer) -> Result<Self, TryFromIntegerError>try_from)Performs the conversion.
impl Assign<i8> for Integer[src]
impl Assign<i8> for Integerimpl From<i8> for Integer[src]
impl From<i8> for Integerimpl<'a> Assign<&'a i8> for Integer[src]
impl<'a> Assign<&'a i8> for Integerimpl Assign<i16> for Integer[src]
impl Assign<i16> for Integerimpl From<i16> for Integer[src]
impl From<i16> for Integerimpl<'a> Assign<&'a i16> for Integer[src]
impl<'a> Assign<&'a i16> for Integerimpl Assign<i32> for Integer[src]
impl Assign<i32> for Integerimpl From<i32> for Integer[src]
impl From<i32> for Integerimpl<'a> Assign<&'a i32> for Integer[src]
impl<'a> Assign<&'a i32> for Integerimpl Assign<i64> for Integer[src]
impl Assign<i64> for Integerimpl From<i64> for Integer[src]
impl From<i64> for Integerimpl<'a> Assign<&'a i64> for Integer[src]
impl<'a> Assign<&'a i64> for Integerimpl Assign<i128> for Integer[src]
impl Assign<i128> for Integerimpl From<i128> for Integer[src]
impl From<i128> for Integerimpl<'a> Assign<&'a i128> for Integer[src]
impl<'a> Assign<&'a i128> for Integerimpl Assign<isize> for Integer[src]
impl Assign<isize> for Integerimpl From<isize> for Integer[src]
impl From<isize> for Integerimpl<'a> Assign<&'a isize> for Integer[src]
impl<'a> Assign<&'a isize> for Integerimpl Assign<u8> for Integer[src]
impl Assign<u8> for Integerimpl From<u8> for Integer[src]
impl From<u8> for Integerimpl<'a> Assign<&'a u8> for Integer[src]
impl<'a> Assign<&'a u8> for Integerimpl Assign<u16> for Integer[src]
impl Assign<u16> for Integerimpl From<u16> for Integer[src]
impl From<u16> for Integerimpl<'a> Assign<&'a u16> for Integer[src]
impl<'a> Assign<&'a u16> for Integerimpl Assign<u32> for Integer[src]
impl Assign<u32> for Integerimpl From<u32> for Integer[src]
impl From<u32> for Integerimpl<'a> Assign<&'a u32> for Integer[src]
impl<'a> Assign<&'a u32> for Integerimpl Assign<u64> for Integer[src]
impl Assign<u64> for Integerimpl From<u64> for Integer[src]
impl From<u64> for Integerimpl<'a> Assign<&'a u64> for Integer[src]
impl<'a> Assign<&'a u64> for Integerimpl Assign<u128> for Integer[src]
impl Assign<u128> for Integerimpl From<u128> for Integer[src]
impl From<u128> for Integerimpl<'a> Assign<&'a u128> for Integer[src]
impl<'a> Assign<&'a u128> for Integerimpl Assign<usize> for Integer[src]
impl Assign<usize> for Integerimpl From<usize> for Integer[src]
impl From<usize> for Integerimpl<'a> Assign<&'a usize> for Integer[src]
impl<'a> Assign<&'a usize> for Integerimpl FromStr for Integer[src]
impl FromStr for Integertype Err = ParseIntegerError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<Integer, ParseIntegerError>[src]
fn from_str(src: &str) -> Result<Integer, ParseIntegerError>Parses a string s to return a value of this type. Read more
impl Display for Integer[src]
impl Display for Integerfn fmt(&self, f: &mut Formatter) -> Result[src]
fn fmt(&self, f: &mut Formatter) -> ResultFormats the value using the given formatter. Read more
impl Debug for Integer[src]
impl Debug for Integerfn fmt(&self, f: &mut Formatter) -> Result[src]
fn fmt(&self, f: &mut Formatter) -> ResultFormats the value using the given formatter. Read more
impl Binary for Integer[src]
impl Binary for Integerimpl Octal for Integer[src]
impl Octal for Integerimpl LowerHex for Integer[src]
impl LowerHex for Integerimpl UpperHex for Integer[src]
impl UpperHex for Integerimpl Send for Integer[src]
impl Send for Integerimpl Sync for Integer[src]
impl Sync for Integerimpl PartialEq<Integer> for Rational[src]
impl PartialEq<Integer> for Rationalfn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Rational> for Integer[src]
impl PartialEq<Rational> for Integerfn eq(&self, other: &Rational) -> bool[src]
fn eq(&self, other: &Rational) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<Integer> for Rational[src]
impl PartialOrd<Integer> for Rationalfn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Rational> for Integer[src]
impl PartialOrd<Rational> for Integerfn partial_cmp(&self, other: &Rational) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Rational) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl Add<Integer> for Float[src]
impl Add<Integer> for Floattype Output = Float
The resulting type after applying the + operator.
fn add(self, rhs: Integer) -> Float[src]
fn add(self, rhs: Integer) -> FloatPerforms the + operation.
impl<'a> Add<&'a Integer> for Float[src]
impl<'a> Add<&'a Integer> for Floattype Output = Float
The resulting type after applying the + operator.
fn add(self, rhs: &Integer) -> Float[src]
fn add(self, rhs: &Integer) -> FloatPerforms the + operation.
impl<'a> Add<&'a Integer> for &'a Float[src]
impl<'a> Add<&'a Integer> for &'a Floattype Output = AddIntegerIncomplete<'a>
The resulting type after applying the + operator.
fn add(self, rhs: &'a Integer) -> AddIntegerIncomplete[src]
fn add(self, rhs: &'a Integer) -> AddIntegerIncompletePerforms the + operation.
impl AddAssign<Integer> for Float[src]
impl AddAssign<Integer> for Floatfn add_assign(&mut self, rhs: Integer)[src]
fn add_assign(&mut self, rhs: Integer)Performs the += operation.
impl<'a> AddAssign<&'a Integer> for Float[src]
impl<'a> AddAssign<&'a Integer> for Floatfn add_assign(&mut self, rhs: &Integer)[src]
fn add_assign(&mut self, rhs: &Integer)Performs the += operation.
impl AddAssignRound<Integer> for Float[src]
impl AddAssignRound<Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn add_assign_round(&mut self, rhs: Integer, round: Round) -> Ordering[src]
fn add_assign_round(&mut self, rhs: Integer, round: Round) -> OrderingPerforms the addition. Read more
impl<'a> AddAssignRound<&'a Integer> for Float[src]
impl<'a> AddAssignRound<&'a Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn add_assign_round(&mut self, rhs: &Integer, round: Round) -> Ordering[src]
fn add_assign_round(&mut self, rhs: &Integer, round: Round) -> OrderingPerforms the addition. Read more
impl<'a> Add<Integer> for &'a Float[src]
impl<'a> Add<Integer> for &'a Floattype Output = AddOwnedIntegerIncomplete<'a>
The resulting type after applying the + operator.
fn add(self, rhs: Integer) -> AddOwnedIntegerIncomplete<'a>[src]
fn add(self, rhs: Integer) -> AddOwnedIntegerIncomplete<'a>Performs the + operation.
impl Add<Float> for Integer[src]
impl Add<Float> for Integertype Output = Float
The resulting type after applying the + operator.
fn add(self, rhs: Float) -> Float[src]
fn add(self, rhs: Float) -> FloatPerforms the + operation.
impl<'a> Add<&'a Float> for Integer[src]
impl<'a> Add<&'a Float> for Integertype Output = AddOwnedIntegerIncomplete<'a>
The resulting type after applying the + operator.
fn add(self, rhs: &Float) -> AddOwnedIntegerIncomplete[src]
fn add(self, rhs: &Float) -> AddOwnedIntegerIncompletePerforms the + operation.
impl<'a> Add<Float> for &'a Integer[src]
impl<'a> Add<Float> for &'a Integertype Output = Float
The resulting type after applying the + operator.
fn add(self, rhs: Float) -> Float[src]
fn add(self, rhs: Float) -> FloatPerforms the + operation.
impl<'a> Add<&'a Float> for &'a Integer[src]
impl<'a> Add<&'a Float> for &'a Integertype Output = AddIntegerIncomplete<'a>
The resulting type after applying the + operator.
fn add(self, rhs: &'a Float) -> AddIntegerIncomplete[src]
fn add(self, rhs: &'a Float) -> AddIntegerIncompletePerforms the + operation.
impl AddFrom<Integer> for Float[src]
impl AddFrom<Integer> for Floatimpl<'a> AddFrom<&'a Integer> for Float[src]
impl<'a> AddFrom<&'a Integer> for Floatimpl AddFromRound<Integer> for Float[src]
impl AddFromRound<Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn add_from_round(&mut self, lhs: Integer, round: Round) -> Ordering[src]
fn add_from_round(&mut self, lhs: Integer, round: Round) -> OrderingPerforms the addition. Read more
impl<'a> AddFromRound<&'a Integer> for Float[src]
impl<'a> AddFromRound<&'a Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn add_from_round(&mut self, lhs: &Integer, round: Round) -> Ordering[src]
fn add_from_round(&mut self, lhs: &Integer, round: Round) -> OrderingPerforms the addition. Read more
impl Sub<Integer> for Float[src]
impl Sub<Integer> for Floattype Output = Float
The resulting type after applying the - operator.
fn sub(self, rhs: Integer) -> Float[src]
fn sub(self, rhs: Integer) -> FloatPerforms the - operation.
impl<'a> Sub<&'a Integer> for Float[src]
impl<'a> Sub<&'a Integer> for Floattype Output = Float
The resulting type after applying the - operator.
fn sub(self, rhs: &Integer) -> Float[src]
fn sub(self, rhs: &Integer) -> FloatPerforms the - operation.
impl<'a> Sub<&'a Integer> for &'a Float[src]
impl<'a> Sub<&'a Integer> for &'a Floattype Output = SubIntegerIncomplete<'a>
The resulting type after applying the - operator.
fn sub(self, rhs: &'a Integer) -> SubIntegerIncomplete[src]
fn sub(self, rhs: &'a Integer) -> SubIntegerIncompletePerforms the - operation.
impl SubAssign<Integer> for Float[src]
impl SubAssign<Integer> for Floatfn sub_assign(&mut self, rhs: Integer)[src]
fn sub_assign(&mut self, rhs: Integer)Performs the -= operation.
impl<'a> SubAssign<&'a Integer> for Float[src]
impl<'a> SubAssign<&'a Integer> for Floatfn sub_assign(&mut self, rhs: &Integer)[src]
fn sub_assign(&mut self, rhs: &Integer)Performs the -= operation.
impl SubAssignRound<Integer> for Float[src]
impl SubAssignRound<Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn sub_assign_round(&mut self, rhs: Integer, round: Round) -> Ordering[src]
fn sub_assign_round(&mut self, rhs: Integer, round: Round) -> OrderingPerforms the subtraction. Read more
impl<'a> SubAssignRound<&'a Integer> for Float[src]
impl<'a> SubAssignRound<&'a Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn sub_assign_round(&mut self, rhs: &Integer, round: Round) -> Ordering[src]
fn sub_assign_round(&mut self, rhs: &Integer, round: Round) -> OrderingPerforms the subtraction. Read more
impl<'a> Sub<Integer> for &'a Float[src]
impl<'a> Sub<Integer> for &'a Floattype Output = SubFromIntegerIncomplete<'a>
The resulting type after applying the - operator.
fn sub(self, rhs: Integer) -> SubFromIntegerIncomplete<'a>[src]
fn sub(self, rhs: Integer) -> SubFromIntegerIncomplete<'a>Performs the - operation.
impl Sub<Float> for Integer[src]
impl Sub<Float> for Integertype Output = Float
The resulting type after applying the - operator.
fn sub(self, rhs: Float) -> Float[src]
fn sub(self, rhs: Float) -> FloatPerforms the - operation.
impl<'a> Sub<&'a Float> for Integer[src]
impl<'a> Sub<&'a Float> for Integertype Output = SubFromOwnedIntegerIncomplete<'a>
The resulting type after applying the - operator.
fn sub(self, rhs: &Float) -> SubFromOwnedIntegerIncomplete[src]
fn sub(self, rhs: &Float) -> SubFromOwnedIntegerIncompletePerforms the - operation.
impl<'a> Sub<Float> for &'a Integer[src]
impl<'a> Sub<Float> for &'a Integertype Output = Float
The resulting type after applying the - operator.
fn sub(self, rhs: Float) -> Float[src]
fn sub(self, rhs: Float) -> FloatPerforms the - operation.
impl<'a> Sub<&'a Float> for &'a Integer[src]
impl<'a> Sub<&'a Float> for &'a Integertype Output = SubOwnedIntegerIncomplete<'a>
The resulting type after applying the - operator.
fn sub(self, rhs: &'a Float) -> SubOwnedIntegerIncomplete[src]
fn sub(self, rhs: &'a Float) -> SubOwnedIntegerIncompletePerforms the - operation.
impl SubFrom<Integer> for Float[src]
impl SubFrom<Integer> for Floatimpl<'a> SubFrom<&'a Integer> for Float[src]
impl<'a> SubFrom<&'a Integer> for Floatimpl SubFromRound<Integer> for Float[src]
impl SubFromRound<Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn sub_from_round(&mut self, lhs: Integer, round: Round) -> Ordering[src]
fn sub_from_round(&mut self, lhs: Integer, round: Round) -> OrderingPerforms the subtraction. Read more
impl<'a> SubFromRound<&'a Integer> for Float[src]
impl<'a> SubFromRound<&'a Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn sub_from_round(&mut self, lhs: &Integer, round: Round) -> Ordering[src]
fn sub_from_round(&mut self, lhs: &Integer, round: Round) -> OrderingPerforms the subtraction. Read more
impl Mul<Integer> for Float[src]
impl Mul<Integer> for Floattype Output = Float
The resulting type after applying the * operator.
fn mul(self, rhs: Integer) -> Float[src]
fn mul(self, rhs: Integer) -> FloatPerforms the * operation.
impl<'a> Mul<&'a Integer> for Float[src]
impl<'a> Mul<&'a Integer> for Floattype Output = Float
The resulting type after applying the * operator.
fn mul(self, rhs: &Integer) -> Float[src]
fn mul(self, rhs: &Integer) -> FloatPerforms the * operation.
impl<'a> Mul<&'a Integer> for &'a Float[src]
impl<'a> Mul<&'a Integer> for &'a Floattype Output = MulIntegerIncomplete<'a>
The resulting type after applying the * operator.
fn mul(self, rhs: &'a Integer) -> MulIntegerIncomplete[src]
fn mul(self, rhs: &'a Integer) -> MulIntegerIncompletePerforms the * operation.
impl MulAssign<Integer> for Float[src]
impl MulAssign<Integer> for Floatfn mul_assign(&mut self, rhs: Integer)[src]
fn mul_assign(&mut self, rhs: Integer)Performs the *= operation.
impl<'a> MulAssign<&'a Integer> for Float[src]
impl<'a> MulAssign<&'a Integer> for Floatfn mul_assign(&mut self, rhs: &Integer)[src]
fn mul_assign(&mut self, rhs: &Integer)Performs the *= operation.
impl MulAssignRound<Integer> for Float[src]
impl MulAssignRound<Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn mul_assign_round(&mut self, rhs: Integer, round: Round) -> Ordering[src]
fn mul_assign_round(&mut self, rhs: Integer, round: Round) -> OrderingPerforms the multiplication. Read more
impl<'a> MulAssignRound<&'a Integer> for Float[src]
impl<'a> MulAssignRound<&'a Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn mul_assign_round(&mut self, rhs: &Integer, round: Round) -> Ordering[src]
fn mul_assign_round(&mut self, rhs: &Integer, round: Round) -> OrderingPerforms the multiplication. Read more
impl<'a> Mul<Integer> for &'a Float[src]
impl<'a> Mul<Integer> for &'a Floattype Output = MulOwnedIntegerIncomplete<'a>
The resulting type after applying the * operator.
fn mul(self, rhs: Integer) -> MulOwnedIntegerIncomplete<'a>[src]
fn mul(self, rhs: Integer) -> MulOwnedIntegerIncomplete<'a>Performs the * operation.
impl Mul<Float> for Integer[src]
impl Mul<Float> for Integertype Output = Float
The resulting type after applying the * operator.
fn mul(self, rhs: Float) -> Float[src]
fn mul(self, rhs: Float) -> FloatPerforms the * operation.
impl<'a> Mul<&'a Float> for Integer[src]
impl<'a> Mul<&'a Float> for Integertype Output = MulOwnedIntegerIncomplete<'a>
The resulting type after applying the * operator.
fn mul(self, rhs: &Float) -> MulOwnedIntegerIncomplete[src]
fn mul(self, rhs: &Float) -> MulOwnedIntegerIncompletePerforms the * operation.
impl<'a> Mul<Float> for &'a Integer[src]
impl<'a> Mul<Float> for &'a Integertype Output = Float
The resulting type after applying the * operator.
fn mul(self, rhs: Float) -> Float[src]
fn mul(self, rhs: Float) -> FloatPerforms the * operation.
impl<'a> Mul<&'a Float> for &'a Integer[src]
impl<'a> Mul<&'a Float> for &'a Integertype Output = MulIntegerIncomplete<'a>
The resulting type after applying the * operator.
fn mul(self, rhs: &'a Float) -> MulIntegerIncomplete[src]
fn mul(self, rhs: &'a Float) -> MulIntegerIncompletePerforms the * operation.
impl MulFrom<Integer> for Float[src]
impl MulFrom<Integer> for Floatimpl<'a> MulFrom<&'a Integer> for Float[src]
impl<'a> MulFrom<&'a Integer> for Floatimpl MulFromRound<Integer> for Float[src]
impl MulFromRound<Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn mul_from_round(&mut self, lhs: Integer, round: Round) -> Ordering[src]
fn mul_from_round(&mut self, lhs: Integer, round: Round) -> OrderingPerforms the multiplication. Read more
impl<'a> MulFromRound<&'a Integer> for Float[src]
impl<'a> MulFromRound<&'a Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn mul_from_round(&mut self, lhs: &Integer, round: Round) -> Ordering[src]
fn mul_from_round(&mut self, lhs: &Integer, round: Round) -> OrderingPerforms the multiplication. Read more
impl Div<Integer> for Float[src]
impl Div<Integer> for Floattype Output = Float
The resulting type after applying the / operator.
fn div(self, rhs: Integer) -> Float[src]
fn div(self, rhs: Integer) -> FloatPerforms the / operation.
impl<'a> Div<&'a Integer> for Float[src]
impl<'a> Div<&'a Integer> for Floattype Output = Float
The resulting type after applying the / operator.
fn div(self, rhs: &Integer) -> Float[src]
fn div(self, rhs: &Integer) -> FloatPerforms the / operation.
impl<'a> Div<&'a Integer> for &'a Float[src]
impl<'a> Div<&'a Integer> for &'a Floattype Output = DivIntegerIncomplete<'a>
The resulting type after applying the / operator.
fn div(self, rhs: &'a Integer) -> DivIntegerIncomplete[src]
fn div(self, rhs: &'a Integer) -> DivIntegerIncompletePerforms the / operation.
impl DivAssign<Integer> for Float[src]
impl DivAssign<Integer> for Floatfn div_assign(&mut self, rhs: Integer)[src]
fn div_assign(&mut self, rhs: Integer)Performs the /= operation.
impl<'a> DivAssign<&'a Integer> for Float[src]
impl<'a> DivAssign<&'a Integer> for Floatfn div_assign(&mut self, rhs: &Integer)[src]
fn div_assign(&mut self, rhs: &Integer)Performs the /= operation.
impl DivAssignRound<Integer> for Float[src]
impl DivAssignRound<Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn div_assign_round(&mut self, rhs: Integer, round: Round) -> Ordering[src]
fn div_assign_round(&mut self, rhs: Integer, round: Round) -> OrderingPerforms the division. Read more
impl<'a> DivAssignRound<&'a Integer> for Float[src]
impl<'a> DivAssignRound<&'a Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn div_assign_round(&mut self, rhs: &Integer, round: Round) -> Ordering[src]
fn div_assign_round(&mut self, rhs: &Integer, round: Round) -> OrderingPerforms the division. Read more
impl<'a> Div<Integer> for &'a Float[src]
impl<'a> Div<Integer> for &'a Floattype Output = DivFromIntegerIncomplete<'a>
The resulting type after applying the / operator.
fn div(self, rhs: Integer) -> DivFromIntegerIncomplete<'a>[src]
fn div(self, rhs: Integer) -> DivFromIntegerIncomplete<'a>Performs the / operation.
impl Div<Float> for Integer[src]
impl Div<Float> for Integertype Output = Float
The resulting type after applying the / operator.
fn div(self, rhs: Float) -> Float[src]
fn div(self, rhs: Float) -> FloatPerforms the / operation.
impl<'a> Div<&'a Float> for Integer[src]
impl<'a> Div<&'a Float> for Integertype Output = DivFromOwnedIntegerIncomplete<'a>
The resulting type after applying the / operator.
fn div(self, rhs: &Float) -> DivFromOwnedIntegerIncomplete[src]
fn div(self, rhs: &Float) -> DivFromOwnedIntegerIncompletePerforms the / operation.
impl<'a> Div<Float> for &'a Integer[src]
impl<'a> Div<Float> for &'a Integertype Output = Float
The resulting type after applying the / operator.
fn div(self, rhs: Float) -> Float[src]
fn div(self, rhs: Float) -> FloatPerforms the / operation.
impl<'a> Div<&'a Float> for &'a Integer[src]
impl<'a> Div<&'a Float> for &'a Integertype Output = DivOwnedIntegerIncomplete<'a>
The resulting type after applying the / operator.
fn div(self, rhs: &'a Float) -> DivOwnedIntegerIncomplete[src]
fn div(self, rhs: &'a Float) -> DivOwnedIntegerIncompletePerforms the / operation.
impl DivFrom<Integer> for Float[src]
impl DivFrom<Integer> for Floatimpl<'a> DivFrom<&'a Integer> for Float[src]
impl<'a> DivFrom<&'a Integer> for Floatimpl DivFromRound<Integer> for Float[src]
impl DivFromRound<Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn div_from_round(&mut self, lhs: Integer, round: Round) -> Ordering[src]
fn div_from_round(&mut self, lhs: Integer, round: Round) -> OrderingPerforms the division. Read more
impl<'a> DivFromRound<&'a Integer> for Float[src]
impl<'a> DivFromRound<&'a Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn div_from_round(&mut self, lhs: &Integer, round: Round) -> Ordering[src]
fn div_from_round(&mut self, lhs: &Integer, round: Round) -> OrderingPerforms the division. Read more
impl Pow<Integer> for Float[src]
impl Pow<Integer> for Floattype Output = Float
The resulting type after the power operation.
fn pow(self, rhs: Integer) -> Float[src]
fn pow(self, rhs: Integer) -> FloatPerforms the power operation. Read more
impl<'a> Pow<&'a Integer> for Float[src]
impl<'a> Pow<&'a Integer> for Floattype Output = Float
The resulting type after the power operation.
fn pow(self, rhs: &Integer) -> Float[src]
fn pow(self, rhs: &Integer) -> FloatPerforms the power operation. Read more
impl<'a> Pow<&'a Integer> for &'a Float[src]
impl<'a> Pow<&'a Integer> for &'a Floattype Output = PowIntegerIncomplete<'a>
The resulting type after the power operation.
fn pow(self, rhs: &'a Integer) -> PowIntegerIncomplete[src]
fn pow(self, rhs: &'a Integer) -> PowIntegerIncompletePerforms the power operation. Read more
impl PowAssign<Integer> for Float[src]
impl PowAssign<Integer> for Floatfn pow_assign(&mut self, rhs: Integer)[src]
fn pow_assign(&mut self, rhs: Integer)Peforms the power operation. Read more
impl<'a> PowAssign<&'a Integer> for Float[src]
impl<'a> PowAssign<&'a Integer> for Floatfn pow_assign(&mut self, rhs: &Integer)[src]
fn pow_assign(&mut self, rhs: &Integer)Peforms the power operation. Read more
impl PowAssignRound<Integer> for Float[src]
impl PowAssignRound<Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn pow_assign_round(&mut self, rhs: Integer, round: Round) -> Ordering[src]
fn pow_assign_round(&mut self, rhs: Integer, round: Round) -> OrderingPerforms the power operation. Read more
impl<'a> PowAssignRound<&'a Integer> for Float[src]
impl<'a> PowAssignRound<&'a Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn pow_assign_round(&mut self, rhs: &Integer, round: Round) -> Ordering[src]
fn pow_assign_round(&mut self, rhs: &Integer, round: Round) -> OrderingPerforms the power operation. Read more
impl<'a> Pow<Integer> for &'a Float[src]
impl<'a> Pow<Integer> for &'a Floattype Output = PowOwnedIntegerIncomplete<'a>
The resulting type after the power operation.
fn pow(self, rhs: Integer) -> PowOwnedIntegerIncomplete<'a>[src]
fn pow(self, rhs: Integer) -> PowOwnedIntegerIncomplete<'a>Performs the power operation. Read more
impl PartialEq<Integer> for Float[src]
impl PartialEq<Integer> for Floatfn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Float> for Integer[src]
impl PartialEq<Float> for Integerfn eq(&self, other: &Float) -> bool[src]
fn eq(&self, other: &Float) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialOrd<Float> for Integer[src]
impl PartialOrd<Float> for Integerfn partial_cmp(&self, other: &Float) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Float) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Integer> for Float[src]
impl PartialOrd<Integer> for Floatfn partial_cmp(&self, other: &Integer) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &Rhs) -> bool1.0.0[src]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl<'a> AssignRound<&'a Integer> for Float[src]
impl<'a> AssignRound<&'a Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn assign_round(&mut self, src: &Integer, round: Round) -> Ordering[src]
fn assign_round(&mut self, src: &Integer, round: Round) -> OrderingPeforms the assignment. Read more
impl AssignRound<Integer> for Float[src]
impl AssignRound<Integer> for Floattype Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn assign_round(&mut self, src: Integer, round: Round) -> Ordering[src]
fn assign_round(&mut self, src: Integer, round: Round) -> OrderingPeforms the assignment. Read more
impl Pow<Integer> for Complex[src]
impl Pow<Integer> for Complextype Output = Complex
The resulting type after the power operation.
fn pow(self, rhs: Integer) -> Complex[src]
fn pow(self, rhs: Integer) -> ComplexPerforms the power operation. Read more
impl<'a> Pow<&'a Integer> for Complex[src]
impl<'a> Pow<&'a Integer> for Complextype Output = Complex
The resulting type after the power operation.
fn pow(self, rhs: &Integer) -> Complex[src]
fn pow(self, rhs: &Integer) -> ComplexPerforms the power operation. Read more
impl<'a> Pow<&'a Integer> for &'a Complex[src]
impl<'a> Pow<&'a Integer> for &'a Complextype Output = PowIntegerIncomplete<'a>
The resulting type after the power operation.
fn pow(self, rhs: &'a Integer) -> PowIntegerIncomplete[src]
fn pow(self, rhs: &'a Integer) -> PowIntegerIncompletePerforms the power operation. Read more
impl PowAssign<Integer> for Complex[src]
impl PowAssign<Integer> for Complexfn pow_assign(&mut self, rhs: Integer)[src]
fn pow_assign(&mut self, rhs: Integer)Peforms the power operation. Read more
impl<'a> PowAssign<&'a Integer> for Complex[src]
impl<'a> PowAssign<&'a Integer> for Complexfn pow_assign(&mut self, rhs: &Integer)[src]
fn pow_assign(&mut self, rhs: &Integer)Peforms the power operation. Read more
impl PowAssignRound<Integer> for Complex[src]
impl PowAssignRound<Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn pow_assign_round(
&mut self,
rhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn pow_assign_round(
&mut self,
rhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the power operation. Read more
impl<'a> PowAssignRound<&'a Integer> for Complex[src]
impl<'a> PowAssignRound<&'a Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn pow_assign_round(
&mut self,
rhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn pow_assign_round(
&mut self,
rhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the power operation. Read more
impl<'a> Pow<Integer> for &'a Complex[src]
impl<'a> Pow<Integer> for &'a Complextype Output = PowOwnedIntegerIncomplete<'a>
The resulting type after the power operation.
fn pow(self, rhs: Integer) -> PowOwnedIntegerIncomplete<'a>[src]
fn pow(self, rhs: Integer) -> PowOwnedIntegerIncomplete<'a>Performs the power operation. Read more
impl Add<Integer> for Complex[src]
impl Add<Integer> for Complextype Output = Complex
The resulting type after applying the + operator.
fn add(self, rhs: Integer) -> Complex[src]
fn add(self, rhs: Integer) -> ComplexPerforms the + operation.
impl<'a> Add<&'a Integer> for Complex[src]
impl<'a> Add<&'a Integer> for Complextype Output = Complex
The resulting type after applying the + operator.
fn add(self, rhs: &Integer) -> Complex[src]
fn add(self, rhs: &Integer) -> ComplexPerforms the + operation.
impl<'a> Add<&'a Integer> for &'a Complex[src]
impl<'a> Add<&'a Integer> for &'a Complextype Output = AddIntegerIncomplete<'a>
The resulting type after applying the + operator.
fn add(self, rhs: &'a Integer) -> AddIntegerIncomplete[src]
fn add(self, rhs: &'a Integer) -> AddIntegerIncompletePerforms the + operation.
impl AddAssign<Integer> for Complex[src]
impl AddAssign<Integer> for Complexfn add_assign(&mut self, rhs: Integer)[src]
fn add_assign(&mut self, rhs: Integer)Performs the += operation.
impl<'a> AddAssign<&'a Integer> for Complex[src]
impl<'a> AddAssign<&'a Integer> for Complexfn add_assign(&mut self, rhs: &Integer)[src]
fn add_assign(&mut self, rhs: &Integer)Performs the += operation.
impl AddAssignRound<Integer> for Complex[src]
impl AddAssignRound<Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn add_assign_round(
&mut self,
rhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn add_assign_round(
&mut self,
rhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the addition. Read more
impl<'a> AddAssignRound<&'a Integer> for Complex[src]
impl<'a> AddAssignRound<&'a Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn add_assign_round(
&mut self,
rhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn add_assign_round(
&mut self,
rhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the addition. Read more
impl<'a> Add<Integer> for &'a Complex[src]
impl<'a> Add<Integer> for &'a Complextype Output = AddOwnedIntegerIncomplete<'a>
The resulting type after applying the + operator.
fn add(self, rhs: Integer) -> AddOwnedIntegerIncomplete<'a>[src]
fn add(self, rhs: Integer) -> AddOwnedIntegerIncomplete<'a>Performs the + operation.
impl Add<Complex> for Integer[src]
impl Add<Complex> for Integertype Output = Complex
The resulting type after applying the + operator.
fn add(self, rhs: Complex) -> Complex[src]
fn add(self, rhs: Complex) -> ComplexPerforms the + operation.
impl<'a> Add<&'a Complex> for Integer[src]
impl<'a> Add<&'a Complex> for Integertype Output = AddOwnedIntegerIncomplete<'a>
The resulting type after applying the + operator.
fn add(self, rhs: &Complex) -> AddOwnedIntegerIncomplete[src]
fn add(self, rhs: &Complex) -> AddOwnedIntegerIncompletePerforms the + operation.
impl<'a> Add<Complex> for &'a Integer[src]
impl<'a> Add<Complex> for &'a Integertype Output = Complex
The resulting type after applying the + operator.
fn add(self, rhs: Complex) -> Complex[src]
fn add(self, rhs: Complex) -> ComplexPerforms the + operation.
impl<'a> Add<&'a Complex> for &'a Integer[src]
impl<'a> Add<&'a Complex> for &'a Integertype Output = AddIntegerIncomplete<'a>
The resulting type after applying the + operator.
fn add(self, rhs: &'a Complex) -> AddIntegerIncomplete[src]
fn add(self, rhs: &'a Complex) -> AddIntegerIncompletePerforms the + operation.
impl AddFrom<Integer> for Complex[src]
impl AddFrom<Integer> for Compleximpl<'a> AddFrom<&'a Integer> for Complex[src]
impl<'a> AddFrom<&'a Integer> for Compleximpl AddFromRound<Integer> for Complex[src]
impl AddFromRound<Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn add_from_round(
&mut self,
lhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn add_from_round(
&mut self,
lhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the addition. Read more
impl<'a> AddFromRound<&'a Integer> for Complex[src]
impl<'a> AddFromRound<&'a Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn add_from_round(
&mut self,
lhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn add_from_round(
&mut self,
lhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the addition. Read more
impl Sub<Integer> for Complex[src]
impl Sub<Integer> for Complextype Output = Complex
The resulting type after applying the - operator.
fn sub(self, rhs: Integer) -> Complex[src]
fn sub(self, rhs: Integer) -> ComplexPerforms the - operation.
impl<'a> Sub<&'a Integer> for Complex[src]
impl<'a> Sub<&'a Integer> for Complextype Output = Complex
The resulting type after applying the - operator.
fn sub(self, rhs: &Integer) -> Complex[src]
fn sub(self, rhs: &Integer) -> ComplexPerforms the - operation.
impl<'a> Sub<&'a Integer> for &'a Complex[src]
impl<'a> Sub<&'a Integer> for &'a Complextype Output = SubIntegerIncomplete<'a>
The resulting type after applying the - operator.
fn sub(self, rhs: &'a Integer) -> SubIntegerIncomplete[src]
fn sub(self, rhs: &'a Integer) -> SubIntegerIncompletePerforms the - operation.
impl SubAssign<Integer> for Complex[src]
impl SubAssign<Integer> for Complexfn sub_assign(&mut self, rhs: Integer)[src]
fn sub_assign(&mut self, rhs: Integer)Performs the -= operation.
impl<'a> SubAssign<&'a Integer> for Complex[src]
impl<'a> SubAssign<&'a Integer> for Complexfn sub_assign(&mut self, rhs: &Integer)[src]
fn sub_assign(&mut self, rhs: &Integer)Performs the -= operation.
impl SubAssignRound<Integer> for Complex[src]
impl SubAssignRound<Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn sub_assign_round(
&mut self,
rhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn sub_assign_round(
&mut self,
rhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the subtraction. Read more
impl<'a> SubAssignRound<&'a Integer> for Complex[src]
impl<'a> SubAssignRound<&'a Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn sub_assign_round(
&mut self,
rhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn sub_assign_round(
&mut self,
rhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the subtraction. Read more
impl<'a> Sub<Integer> for &'a Complex[src]
impl<'a> Sub<Integer> for &'a Complextype Output = SubFromIntegerIncomplete<'a>
The resulting type after applying the - operator.
fn sub(self, rhs: Integer) -> SubFromIntegerIncomplete<'a>[src]
fn sub(self, rhs: Integer) -> SubFromIntegerIncomplete<'a>Performs the - operation.
impl Sub<Complex> for Integer[src]
impl Sub<Complex> for Integertype Output = Complex
The resulting type after applying the - operator.
fn sub(self, rhs: Complex) -> Complex[src]
fn sub(self, rhs: Complex) -> ComplexPerforms the - operation.
impl<'a> Sub<&'a Complex> for Integer[src]
impl<'a> Sub<&'a Complex> for Integertype Output = SubFromOwnedIntegerIncomplete<'a>
The resulting type after applying the - operator.
fn sub(self, rhs: &Complex) -> SubFromOwnedIntegerIncomplete[src]
fn sub(self, rhs: &Complex) -> SubFromOwnedIntegerIncompletePerforms the - operation.
impl<'a> Sub<Complex> for &'a Integer[src]
impl<'a> Sub<Complex> for &'a Integertype Output = Complex
The resulting type after applying the - operator.
fn sub(self, rhs: Complex) -> Complex[src]
fn sub(self, rhs: Complex) -> ComplexPerforms the - operation.
impl<'a> Sub<&'a Complex> for &'a Integer[src]
impl<'a> Sub<&'a Complex> for &'a Integertype Output = SubOwnedIntegerIncomplete<'a>
The resulting type after applying the - operator.
fn sub(self, rhs: &'a Complex) -> SubOwnedIntegerIncomplete[src]
fn sub(self, rhs: &'a Complex) -> SubOwnedIntegerIncompletePerforms the - operation.
impl SubFrom<Integer> for Complex[src]
impl SubFrom<Integer> for Compleximpl<'a> SubFrom<&'a Integer> for Complex[src]
impl<'a> SubFrom<&'a Integer> for Compleximpl SubFromRound<Integer> for Complex[src]
impl SubFromRound<Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn sub_from_round(
&mut self,
lhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn sub_from_round(
&mut self,
lhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the subtraction. Read more
impl<'a> SubFromRound<&'a Integer> for Complex[src]
impl<'a> SubFromRound<&'a Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn sub_from_round(
&mut self,
lhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn sub_from_round(
&mut self,
lhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the subtraction. Read more
impl Mul<Integer> for Complex[src]
impl Mul<Integer> for Complextype Output = Complex
The resulting type after applying the * operator.
fn mul(self, rhs: Integer) -> Complex[src]
fn mul(self, rhs: Integer) -> ComplexPerforms the * operation.
impl<'a> Mul<&'a Integer> for Complex[src]
impl<'a> Mul<&'a Integer> for Complextype Output = Complex
The resulting type after applying the * operator.
fn mul(self, rhs: &Integer) -> Complex[src]
fn mul(self, rhs: &Integer) -> ComplexPerforms the * operation.
impl<'a> Mul<&'a Integer> for &'a Complex[src]
impl<'a> Mul<&'a Integer> for &'a Complextype Output = MulIntegerIncomplete<'a>
The resulting type after applying the * operator.
fn mul(self, rhs: &'a Integer) -> MulIntegerIncomplete[src]
fn mul(self, rhs: &'a Integer) -> MulIntegerIncompletePerforms the * operation.
impl MulAssign<Integer> for Complex[src]
impl MulAssign<Integer> for Complexfn mul_assign(&mut self, rhs: Integer)[src]
fn mul_assign(&mut self, rhs: Integer)Performs the *= operation.
impl<'a> MulAssign<&'a Integer> for Complex[src]
impl<'a> MulAssign<&'a Integer> for Complexfn mul_assign(&mut self, rhs: &Integer)[src]
fn mul_assign(&mut self, rhs: &Integer)Performs the *= operation.
impl MulAssignRound<Integer> for Complex[src]
impl MulAssignRound<Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn mul_assign_round(
&mut self,
rhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn mul_assign_round(
&mut self,
rhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the multiplication. Read more
impl<'a> MulAssignRound<&'a Integer> for Complex[src]
impl<'a> MulAssignRound<&'a Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn mul_assign_round(
&mut self,
rhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn mul_assign_round(
&mut self,
rhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the multiplication. Read more
impl<'a> Mul<Integer> for &'a Complex[src]
impl<'a> Mul<Integer> for &'a Complextype Output = MulOwnedIntegerIncomplete<'a>
The resulting type after applying the * operator.
fn mul(self, rhs: Integer) -> MulOwnedIntegerIncomplete<'a>[src]
fn mul(self, rhs: Integer) -> MulOwnedIntegerIncomplete<'a>Performs the * operation.
impl Mul<Complex> for Integer[src]
impl Mul<Complex> for Integertype Output = Complex
The resulting type after applying the * operator.
fn mul(self, rhs: Complex) -> Complex[src]
fn mul(self, rhs: Complex) -> ComplexPerforms the * operation.
impl<'a> Mul<&'a Complex> for Integer[src]
impl<'a> Mul<&'a Complex> for Integertype Output = MulOwnedIntegerIncomplete<'a>
The resulting type after applying the * operator.
fn mul(self, rhs: &Complex) -> MulOwnedIntegerIncomplete[src]
fn mul(self, rhs: &Complex) -> MulOwnedIntegerIncompletePerforms the * operation.
impl<'a> Mul<Complex> for &'a Integer[src]
impl<'a> Mul<Complex> for &'a Integertype Output = Complex
The resulting type after applying the * operator.
fn mul(self, rhs: Complex) -> Complex[src]
fn mul(self, rhs: Complex) -> ComplexPerforms the * operation.
impl<'a> Mul<&'a Complex> for &'a Integer[src]
impl<'a> Mul<&'a Complex> for &'a Integertype Output = MulIntegerIncomplete<'a>
The resulting type after applying the * operator.
fn mul(self, rhs: &'a Complex) -> MulIntegerIncomplete[src]
fn mul(self, rhs: &'a Complex) -> MulIntegerIncompletePerforms the * operation.
impl MulFrom<Integer> for Complex[src]
impl MulFrom<Integer> for Compleximpl<'a> MulFrom<&'a Integer> for Complex[src]
impl<'a> MulFrom<&'a Integer> for Compleximpl MulFromRound<Integer> for Complex[src]
impl MulFromRound<Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn mul_from_round(
&mut self,
lhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn mul_from_round(
&mut self,
lhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the multiplication. Read more
impl<'a> MulFromRound<&'a Integer> for Complex[src]
impl<'a> MulFromRound<&'a Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn mul_from_round(
&mut self,
lhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn mul_from_round(
&mut self,
lhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the multiplication. Read more
impl Div<Integer> for Complex[src]
impl Div<Integer> for Complextype Output = Complex
The resulting type after applying the / operator.
fn div(self, rhs: Integer) -> Complex[src]
fn div(self, rhs: Integer) -> ComplexPerforms the / operation.
impl<'a> Div<&'a Integer> for Complex[src]
impl<'a> Div<&'a Integer> for Complextype Output = Complex
The resulting type after applying the / operator.
fn div(self, rhs: &Integer) -> Complex[src]
fn div(self, rhs: &Integer) -> ComplexPerforms the / operation.
impl<'a> Div<&'a Integer> for &'a Complex[src]
impl<'a> Div<&'a Integer> for &'a Complextype Output = DivIntegerIncomplete<'a>
The resulting type after applying the / operator.
fn div(self, rhs: &'a Integer) -> DivIntegerIncomplete[src]
fn div(self, rhs: &'a Integer) -> DivIntegerIncompletePerforms the / operation.
impl DivAssign<Integer> for Complex[src]
impl DivAssign<Integer> for Complexfn div_assign(&mut self, rhs: Integer)[src]
fn div_assign(&mut self, rhs: Integer)Performs the /= operation.
impl<'a> DivAssign<&'a Integer> for Complex[src]
impl<'a> DivAssign<&'a Integer> for Complexfn div_assign(&mut self, rhs: &Integer)[src]
fn div_assign(&mut self, rhs: &Integer)Performs the /= operation.
impl DivAssignRound<Integer> for Complex[src]
impl DivAssignRound<Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn div_assign_round(
&mut self,
rhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn div_assign_round(
&mut self,
rhs: Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the division. Read more
impl<'a> DivAssignRound<&'a Integer> for Complex[src]
impl<'a> DivAssignRound<&'a Integer> for Complextype Round = (Round, Round)
The rounding method.
type Ordering = (Ordering, Ordering)
The direction from rounding.
fn div_assign_round(
&mut self,
rhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)[src]
fn div_assign_round(
&mut self,
rhs: &Integer,
round: (Round, Round)
) -> (Ordering, Ordering)Performs the division. Read more
impl<'a> Div<Integer> for &'a Complex[src]
impl<'a> Div<Integer> for &'a Complextype Output = DivOwnedIntegerIncomplete<'a>
The resulting type after applying the / operator.
fn div(self, rhs: Integer) -> DivOwnedIntegerIncomplete<'a>[src]
fn div(self, rhs: Integer) -> DivOwnedIntegerIncomplete<'a>Performs the / operation.
impl PartialEq<Integer> for Complex[src]
impl PartialEq<Integer> for Complexfn eq(&self, other: &Integer) -> bool[src]
fn eq(&self, other: &Integer) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Complex> for Integer[src]
impl PartialEq<Complex> for Integer