1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
use {Emitable, Parseable, Result};

use super::{LinkBuffer, LinkHeader, LinkNla};

#[derive(Debug, PartialEq, Eq, Clone)]
pub struct LinkMessage {
    header: LinkHeader,
    nlas: Vec<LinkNla>,
}

impl LinkMessage {
    pub fn new() -> Self {
        LinkMessage::from_parts(LinkHeader::new(), vec![])
    }

    pub fn into_parts(self) -> (LinkHeader, Vec<LinkNla>) {
        (self.header, self.nlas)
    }

    pub fn header_mut(&mut self) -> &mut LinkHeader {
        &mut self.header
    }

    pub fn header(&self) -> &LinkHeader {
        &self.header
    }

    pub fn nlas(&self) -> &[LinkNla] {
        self.nlas.as_slice()
    }

    pub fn nlas_mut(&mut self) -> &mut Vec<LinkNla> {
        &mut self.nlas
    }

    pub fn append_nla(&mut self, nla: LinkNla) {
        self.nlas.push(nla)
    }

    pub fn from_parts(header: LinkHeader, nlas: Vec<LinkNla>) -> Self {
        LinkMessage { header, nlas }
    }
}

impl Emitable for LinkMessage {
    fn buffer_len(&self) -> usize {
        self.header.buffer_len() + self.nlas.as_slice().buffer_len()
    }

    fn emit(&self, buffer: &mut [u8]) {
        self.header.emit(buffer);
        self.nlas
            .as_slice()
            .emit(&mut buffer[self.header.buffer_len()..]);
    }
}

impl<'buffer, T: AsRef<[u8]> + 'buffer> Parseable<LinkMessage> for LinkBuffer<&'buffer T> {
    fn parse(&self) -> Result<LinkMessage> {
        Ok(LinkMessage {
            header: self.parse()?,
            nlas: self.parse()?,
        })
    }
}

// FIXME: we should make it possible to provide a "best effort" parsing method. Right now, if we
// fail on a single nla, we return an error. Maybe we could have another impl that returns
// Vec<Result<LinkNla>>.
impl<'buffer, T: AsRef<[u8]> + 'buffer> Parseable<Vec<LinkNla>> for LinkBuffer<&'buffer T> {
    fn parse(&self) -> Result<Vec<LinkNla>> {
        let mut nlas = vec![];
        for nla_buf in self.nlas() {
            nlas.push(nla_buf?.parse()?);
        }
        Ok(nlas)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use constants::*;
    use packets::rtnl::link::*;

    #[cfg_attr(nightly, rustfmt::skip)]
    static HEADER: [u8; 96] = [
        0x00, // address family
        0x00, // reserved
        0x04, 0x03, // link layer type 772 = loopback
        0x01, 0x00, 0x00, 0x00, // interface index = 1
        // Note: in the wireshark capture, the thrid byte is 0x01
        // but that does not correpond to any of the IFF_ flags...
        0x49, 0x00, 0x00, 0x00, // device flags: UP, LOOPBACK, RUNNING, LOWERUP
        0x00, 0x00, 0x00, 0x00, // reserved 2 (aka device change flag)

        // nlas
        0x07, 0x00, 0x03, 0x00, 0x6c, 0x6f, 0x00, // device name L=7,T=3,V=lo
        0x00, // padding
        0x08, 0x00, 0x0d, 0x00, 0xe8, 0x03, 0x00, 0x00, // TxQueue length L=8,T=13,V=1000
        0x05, 0x00, 0x10, 0x00, 0x00, // OperState L=5,T=16,V=0 (unknown)
        0x00, 0x00, 0x00, // padding
        0x05, 0x00, 0x11, 0x00, 0x00, // Link mode L=5,T=17,V=0
        0x00, 0x00, 0x00, // padding
        0x08, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, // MTU L=8,T=4,V=65536
        0x08, 0x00, 0x1b, 0x00, 0x00, 0x00, 0x00, 0x00, // Group L=8,T=27,V=9
        0x08, 0x00, 0x1e, 0x00, 0x00, 0x00, 0x00, 0x00, // Promiscuity L=8,T=30,V=0
        0x08, 0x00, 0x1f, 0x00, 0x01, 0x00, 0x00, 0x00, // Number of Tx Queues L=8,T=31,V=1
        0x08, 0x00, 0x28, 0x00, 0xff, 0xff, 0x00, 0x00, // Maximum GSO segment count L=8,T=40,V=65536
        0x08, 0x00, 0x29, 0x00, 0x00, 0x00, 0x01, 0x00, // Maximum GSO size L=8,T=41,V=65536
    ];

    #[test]
    fn packet_header_read() {
        let packet = LinkBuffer::new(&HEADER[0..16]);
        assert_eq!(packet.address_family(), 0);
        assert_eq!(packet.reserved_1(), 0);
        assert_eq!(packet.link_layer_type(), LinkLayerType::Loopback);
        assert_eq!(packet.link_index(), 1);
        assert_eq!(
            packet.flags(),
            LinkFlags::from(IFF_UP | IFF_LOOPBACK | IFF_RUNNING)
        );
        assert!(packet.flags().is_running());
        assert!(packet.flags().is_loopback());
        assert!(packet.flags().is_up());
        assert_eq!(packet.change_mask(), LinkFlags::new());
    }

    #[test]
    fn packet_header_build() {
        let mut buf = vec![0xff; 16];
        {
            let mut packet = LinkBuffer::new(&mut buf);
            packet.set_address_family(0);
            packet.set_reserved_1(0);
            packet.set_link_layer_type(LinkLayerType::Loopback);
            packet.set_link_index(1);
            let mut flags = LinkFlags::new();
            flags.set_up();
            flags.set_loopback();
            flags.set_running();
            packet.set_flags(flags);
            packet.set_change_mask(LinkFlags::new());
        }
        assert_eq!(&buf[..], &HEADER[0..16]);
    }

    #[test]
    fn packet_nlas_read() {
        let packet = LinkBuffer::new(&HEADER[..]);
        assert_eq!(packet.nlas().count(), 10);
        let mut nlas = packet.nlas();

        // device name L=7,T=3,V=lo
        let nla = nlas.next().unwrap().unwrap();
        nla.check_buffer_length().unwrap();
        assert_eq!(nla.length(), 7);
        assert_eq!(nla.kind(), 3);
        assert_eq!(nla.value(), &[0x6c, 0x6f, 0x00]);
        let parsed: LinkNla = nla.parse().unwrap();
        assert_eq!(parsed, LinkNla::IfName(String::from("lo")));

        // TxQueue length L=8,T=13,V=1000
        let nla = nlas.next().unwrap().unwrap();
        nla.check_buffer_length().unwrap();
        assert_eq!(nla.length(), 8);
        assert_eq!(nla.kind(), 13);
        assert_eq!(nla.value(), &[0xe8, 0x03, 0x00, 0x00]);
        let parsed: LinkNla = nla.parse().unwrap();
        assert_eq!(parsed, LinkNla::TxQueueLen(1000));

        // OperState L=5,T=16,V=0 (unknown)
        let nla = nlas.next().unwrap().unwrap();
        nla.check_buffer_length().unwrap();
        assert_eq!(nla.length(), 5);
        assert_eq!(nla.kind(), 16);
        assert_eq!(nla.value(), &[0x00]);
        let parsed: LinkNla = nla.parse().unwrap();
        assert_eq!(parsed, LinkNla::OperState(LinkState::Unknown));

        // Link mode L=5,T=17,V=0
        let nla = nlas.next().unwrap().unwrap();
        nla.check_buffer_length().unwrap();
        assert_eq!(nla.length(), 5);
        assert_eq!(nla.kind(), 17);
        assert_eq!(nla.value(), &[0x00]);
        let parsed: LinkNla = nla.parse().unwrap();
        assert_eq!(parsed, LinkNla::LinkMode(0));

        // MTU L=8,T=4,V=65536
        let nla = nlas.next().unwrap().unwrap();
        nla.check_buffer_length().unwrap();
        assert_eq!(nla.length(), 8);
        assert_eq!(nla.kind(), 4);
        assert_eq!(nla.value(), &[0x00, 0x00, 0x01, 0x00]);
        let parsed: LinkNla = nla.parse().unwrap();
        assert_eq!(parsed, LinkNla::Mtu(65_536));

        // 0x00, 0x00, 0x00, 0x00,
        // Group L=8,T=27,V=9
        let nla = nlas.next().unwrap().unwrap();
        nla.check_buffer_length().unwrap();
        assert_eq!(nla.length(), 8);
        assert_eq!(nla.kind(), 27);
        assert_eq!(nla.value(), &[0x00, 0x00, 0x00, 0x00]);
        let parsed: LinkNla = nla.parse().unwrap();
        assert_eq!(parsed, LinkNla::Group(0));

        // Promiscuity L=8,T=30,V=0
        let nla = nlas.next().unwrap().unwrap();
        nla.check_buffer_length().unwrap();
        assert_eq!(nla.length(), 8);
        assert_eq!(nla.kind(), 30);
        assert_eq!(nla.value(), &[0x00, 0x00, 0x00, 0x00]);
        let parsed: LinkNla = nla.parse().unwrap();
        assert_eq!(parsed, LinkNla::Promiscuity(0));

        // Number of Tx Queues L=8,T=31,V=1
        // 0x01, 0x00, 0x00, 0x00
        let nla = nlas.next().unwrap().unwrap();
        nla.check_buffer_length().unwrap();
        assert_eq!(nla.length(), 8);
        assert_eq!(nla.kind(), 31);
        assert_eq!(nla.value(), &[0x01, 0x00, 0x00, 0x00]);
        let parsed: LinkNla = nla.parse().unwrap();
        assert_eq!(parsed, LinkNla::NumTxQueues(1));
    }

    #[test]
    fn emit() {
        let mut header = LinkHeader::new();
        header
            .set_link_layer_type(LinkLayerType::Loopback)
            .set_index(1)
            .set_flags(LinkFlags::from(
                IFF_UP | IFF_LOOPBACK | IFF_RUNNING | IFF_LOWER_UP,
            ));

        let nlas = vec![
            LinkNla::IfName("lo".into()),
            LinkNla::TxQueueLen(1000),
            LinkNla::OperState(LinkState::Unknown),
            LinkNla::LinkMode(0),
            LinkNla::Mtu(0x1_0000),
            LinkNla::Group(0),
            LinkNla::Promiscuity(0),
            LinkNla::NumTxQueues(1),
            LinkNla::GsoMaxSegs(0xffff),
            LinkNla::GsoMaxSize(0x1_0000),
        ];

        let packet = LinkMessage::from_parts(header, nlas);

        let mut buf = vec![0; 96];

        assert_eq!(packet.buffer_len(), 96);
        packet.emit(&mut buf[..]);
    }
}