1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
//
// Routing Table
//   Copyright (C) 2019 Toshiaki Takada
//
// IP Prefix - abstract IPv? address and prefix length.
//

use std::net::Ipv4Addr;
use std::net::Ipv6Addr;
use std::str::FromStr;
use std::error::Error;
use std::fmt;
    
///
/// Trait to extend IpAddr.
///
pub trait AddressLen {
    /// Return address length in bits.
    fn address_len() -> u8;

    /// Construct address with all 0s.
    fn empty_new() -> Self;
}

/// Trait implementation for Ipv4Addr.
impl AddressLen for Ipv4Addr {
    /// Return address length in bits.
    fn address_len() -> u8 {
        32
    }

    /// Construct address with all 0s.
    fn empty_new() -> Self {
        Ipv4Addr::new(0, 0, 0, 0)
    }
}

/// Trait implementation for Ipv6Addr.
impl AddressLen for Ipv6Addr {
    /// Return address length in bits.
    fn address_len() -> u8 {
        128
    }

    /// Construct address with all 0s.
    fn empty_new() -> Self {
        Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)
    }
}

///
/// Trait Prefixable.
///
pub trait Prefixable {
    /// Construct a prefix from given prefix.
    fn from_prefix(p: &Self) -> Self;

    /// Construct a prefix from common parts of two prefixes.
    fn from_common(prefix1: &Self, prefix2: &Self) -> Self;

    /// Return prefix length.
    fn len(&self) -> u8;

    /// Return 0 or 1 at certain position of bit in the prefix.
    fn bit_at(&self, index: u8) -> u8 {
        let offset = index / 8;
        let shift = 7 - (index % 8);
        let octets = self.octets();

        (octets[offset as usize] >> shift) & 0x1
    }

    /// Return reference of slice to address.
    fn octets(&self) -> &[u8];

    /// Return mutable reference of slice to address.
    fn octets_mut(&mut self) -> &mut [u8];

    /// Return true if given prefix is included in this prefix.
    fn contains(&self, prefix: &Self) -> bool {
        if self.len() > prefix.len() {
            return false
        }

        let np = self.octets();
        let pp = prefix.octets();

        let mut offset: usize = self.len() as usize / 8;
        let shift: usize = self.len() as usize % 8;

        if shift > 0 {
            if (MASKBITS[shift] & (np[offset] ^ pp[offset])) > 0 {
                return false
            }
        }

        while offset > 0 {
            offset -= 1;
            if np[offset] != pp[offset] {
                return false
            }
        }

        return true
    }
}

///
/// Bitmask utilities.
///
const PLEN2MASK: [[u8; 4]; 32] = [
    [0x00, 0x00, 0x00, 0x00],
    [0x80, 0x00, 0x00, 0x00],
    [0xc0, 0x00, 0x00, 0x00],
    [0xe0, 0x00, 0x00, 0x00],
    [0xf0, 0x00, 0x00, 0x00],
    [0xf8, 0x00, 0x00, 0x00],
    [0xfc, 0x00, 0x00, 0x00],
    [0xfe, 0x00, 0x00, 0x00],

    [0xff, 0x00, 0x00, 0x00],
    [0xff, 0x80, 0x00, 0x00],
    [0xff, 0xc0, 0x00, 0x00],
    [0xff, 0xe0, 0x00, 0x00],
    [0xff, 0xf0, 0x00, 0x00],
    [0xff, 0xf8, 0x00, 0x00],
    [0xff, 0xfc, 0x00, 0x00],
    [0xff, 0xfe, 0x00, 0x00],

    [0xff, 0xff, 0x00, 0x00],
    [0xff, 0xff, 0x80, 0x00],
    [0xff, 0xff, 0xc0, 0x00],
    [0xff, 0xff, 0xe0, 0x00],
    [0xff, 0xff, 0xf0, 0x00],
    [0xff, 0xff, 0xf8, 0x00],
    [0xff, 0xff, 0xfc, 0x00],
    [0xff, 0xff, 0xfe, 0x00],

    [0xff, 0xff, 0xff, 0x00],
    [0xff, 0xff, 0xff, 0x80],
    [0xff, 0xff, 0xff, 0xc0],
    [0xff, 0xff, 0xff, 0xe0],
    [0xff, 0xff, 0xff, 0xf0],
    [0xff, 0xff, 0xff, 0xf8],
    [0xff, 0xff, 0xff, 0xfc],
    [0xff, 0xff, 0xff, 0xfe],
];

const PLEN2MASK6: [u16; 16] = [
    0x0000,
    0x8000,
    0xc000,
    0xe000,
    0xf000,
    0xf800,
    0xfc00,
    0xfe00,

    0xff00,
    0xff80,
    0xffc0,
    0xffe0,
    0xfff0,
    0xfff8,
    0xfffc,
    0xfffe,
];

const MASKBITS: [u8; 9] = [
    0x00, 0x80, 0xc0, 0xe0,
    0xf0, 0xf8, 0xfc, 0xfe, 0xff
];

/// Get 4 u8 values from slices and return u32 in network byte order.
fn slice_get_u32(s: &[u8], i: usize) -> u32 {
    ((s[i] as u32) << 24) | ((s[i + 1] as u32) << 16) | ((s[i + 2] as u32) << 8) | s[i + 3] as u32
}

/// Copy u32 value to slice.
fn slice_copy_u32(s: &mut [u8], v: u32, i: usize) {
    s[i + 0] = ((v >> 24) & 0xFF) as u8;
    s[i + 1] = ((v >> 16) & 0xFF) as u8;
    s[i + 2] = ((v >> 8) & 0xFF) as u8;
    s[i + 3] = (v & 0xFF) as u8;
}

///
/// IP Prefix.
///
#[derive(Debug, Clone, Copy)]
pub struct Prefix<T> {
    // IP Address.
    address: T,

    // Prefix Length.
    len: u8,
}

// 
impl<T: AddressLen + Clone> Prefixable for Prefix<T> {
    /// Construct a prefix from given prefix.
    fn from_prefix(p: &Self) -> Self {
        Self {
            address: p.address.clone(),
            len: p.len
        }
    }

    /// Construct a prefix from common parts of two prefixes, assuming p1 is shorter than p2.
    fn from_common(prefix1: &Self, prefix2: &Self) -> Self {
        let p1 = prefix1.octets();
        let p2 = prefix2.octets();
        let mut i = 0u8;
        let mut j = 0u8;
        let mut pcommon = Self { address: T::empty_new(), len: 0 };
        let px = pcommon.octets_mut();
        let bytes = T::address_len() / 8;

        while i < bytes {
            let l1: u32 = slice_get_u32(p1, i as usize);
            let l2: u32 = slice_get_u32(p2, i as usize);
            let cp: u32 = l1 ^ l2;
            if cp == 0 {
                slice_copy_u32(px, l1, i as usize);
            }
            else {
                j = cp.leading_zeros() as u8;
                let (mask, _) = match j {
                    0 => (0, false),
                    _ => 0xFFFFFFFFu32.overflowing_shl((32 - j) as u32),
                };
                let v = l1 & (mask as u32);

                slice_copy_u32(px, v, i as usize);
                break;
            }

            i += 4;
        }

        pcommon.len = if prefix2.len() > i * 8 + j {
            i * 8 + j
        } else {
            prefix2.len()
        };

        pcommon
    }

    /// Return prefix length.
    fn len(&self) -> u8 {
        self.len
    }

    /// Return reference of slice to address.
    fn octets(&self) -> &[u8] {
        let p = (&self.address as *const T) as *const u8;
        unsafe {
            std::slice::from_raw_parts(p, std::mem::size_of::<T>())
        }
    }

    /// Return mutable reference of slice to address.
    fn octets_mut(&mut self) -> &mut [u8] {
        let p = (&mut self.address as *mut T) as *mut u8;
        unsafe {
            std::slice::from_raw_parts_mut(p, std::mem::size_of::<T>())
        }
    }
}

///
/// Abstract IPv4 and IPv6 both.
///
impl<T: AddressLen + FromStr> Prefix<T> {
    /// Construct prefix from string slice.
    pub fn from_str(s: &str) -> Result<Prefix<T>, PrefixParseError> {
        let (pos, prefix_len) = match s.find('/') {
            // Address with prefix length.
            Some(pos) => {
                match s[pos + 1..].parse::<u8>() {
                    Ok(prefix_len) if prefix_len <= T::address_len() => (pos, prefix_len),
                    _ => return Err(PrefixParseError(())),
                }
            },
            // Consider host address.
            None => (s.len(), T::address_len()),
        };
                    
        let address_str = &s[..pos];
        match T::from_str(address_str) {
            Ok(address) =>
                Ok(Prefix::<T> {
                    address: address,
                    len: prefix_len,
                }),
            Err(_) => Err(PrefixParseError(())),
        }
    }

    /// Return address part of prefix.
    pub fn address(&self) -> &T {
        &self.address
    }
}

/// Impl IPv4 Prefix.
impl Prefix<Ipv4Addr> {
    /// Apply network mask to address part.
    pub fn apply_mask(&mut self) {
        if self.len < Ipv4Addr::address_len() {
            let octets = self.address().octets();
            let mask = &PLEN2MASK[self.len as usize];
            self.address = Ipv4Addr::new(octets[0] & mask[0],
                                         octets[1] & mask[1],
                                         octets[2] & mask[2],
                                         octets[3] & mask[3]);
        }
    }
}

/// Impl IPv6 Prefix.
impl Prefix<Ipv6Addr> {
    /// Apply network mask to address part.
    pub fn apply_mask(&mut self) {
        fn mask4segment(s: u8, len: u8) -> u16 {
            if len >= s * 16 {
                let offset = len - s * 16;
                if offset >= 16 {
                    0xffff
                }
                else {
                    PLEN2MASK6[offset as usize]
                }
            }
            else {
                0
            }
        }

        if self.len < Ipv6Addr::address_len() {
            let segments = self.address().segments();
            self.address = Ipv6Addr::new(segments[0] & mask4segment(0, self.len),
                                         segments[1] & mask4segment(1, self.len),
                                         segments[2] & mask4segment(2, self.len),
                                         segments[3] & mask4segment(3, self.len),
                                         segments[4] & mask4segment(4, self.len),
                                         segments[5] & mask4segment(5, self.len),
                                         segments[6] & mask4segment(6, self.len),
                                         segments[7] & mask4segment(7, self.len));
        }
    }
}

impl<T: AddressLen + ToString> fmt::Display for Prefix<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "{}/{}", self.address.to_string(), self.len)
    }
}

///
/// Prefix Parse Error.
///
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct PrefixParseError(());

impl fmt::Display for PrefixParseError {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.write_str(self.description())
    }
}

impl Error for PrefixParseError {
    fn description(&self) -> &str {
        "invalid IP prefix syntax"
    }
}

///
/// Unit tests for Prefix.
///
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    pub fn test_octets() {
        let p = Prefix::<Ipv4Addr>::from_str("1.2.3.4/24").unwrap();
        let o = p.octets();
        assert_eq!(o, &[1, 2, 3, 4]);

        let p = Prefix::<Ipv6Addr>::from_str("2001:1:2::7:8/48").unwrap();
        let o = p.octets();
        assert_eq!(o, &[0x20, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 7, 0, 8]);
    }

    #[test]
    pub fn test_prefix_ipv4() {
        let p = Prefix::<Ipv4Addr>::from_str("10.10.10.0/24").unwrap();
        assert_eq!(p.address().octets(), [10, 10, 10, 0]);
        assert_eq!(p.to_string(), "10.10.10.0/24");

        let p = Prefix::<Ipv4Addr>::from_str("1.2.3.4").unwrap();
        assert_eq!(p.address().octets(), [1, 2, 3, 4]);
        assert_eq!(p.to_string(), "1.2.3.4/32");

        let mut p = Prefix::<Ipv4Addr>::from_str("1.2.3.4/24").unwrap();
        assert_eq!(p.address().octets(), [1, 2, 3, 4]);
        assert_eq!(p.to_string(), "1.2.3.4/24");
        p.apply_mask();
        assert_eq!(p.address().octets(), [1, 2, 3, 0]);
        assert_eq!(p.to_string(), "1.2.3.0/24");

        let mut p = Prefix::<Ipv4Addr>::from_str("172.16.0.1/16").unwrap();
        assert_eq!(p.address().octets(), [172, 16, 0, 1]);
        assert_eq!(p.to_string(), "172.16.0.1/16");
        p.apply_mask();
        assert_eq!(p.address().octets(), [172, 16, 0, 0]);
        assert_eq!(p.to_string(), "172.16.0.0/16");

        match Prefix::<Ipv4Addr>::from_str("10.10.10.10/33") {
            Ok(_) => assert!(false, "Should return error"),
            Err(_err) => { }
        }
    }

    #[test]
    pub fn test_prefix_ipv4_common() {
        let p1 = Prefix::<Ipv4Addr>::from_str("10.10.10.0/24").unwrap();
        let p2 = Prefix::<Ipv4Addr>::from_str("10.10.11.0/24").unwrap();
        let pc = Prefix::<Ipv4Addr>::from_common(&p1, &p2);
        assert_eq!(pc.to_string(), "10.10.10.0/23");

        let p1 = Prefix::<Ipv4Addr>::from_str("10.10.10.0/24").unwrap();
        let p2 = Prefix::<Ipv4Addr>::from_str("10.10.0.0/16").unwrap();
        let pc = Prefix::<Ipv4Addr>::from_common(&p1, &p2);
        assert_eq!(pc.to_string(), "10.10.0.0/16");

        let p1 = Prefix::<Ipv4Addr>::from_str("192.168.0.0/24").unwrap();
        let p2 = Prefix::<Ipv4Addr>::from_str("10.10.10.0/24").unwrap();
        let pc = Prefix::<Ipv4Addr>::from_common(&p1, &p2);
        assert_eq!(pc.to_string(), "0.0.0.0/0");

        let p1 = Prefix::<Ipv4Addr>::from_str("192.168.0.0/24").unwrap();
        let p2 = Prefix::<Ipv4Addr>::from_str("128.10.10.0/24").unwrap();
        let pc = Prefix::<Ipv4Addr>::from_common(&p1, &p2);
        assert_eq!(pc.to_string(), "128.0.0.0/1");
    }

    #[test]
    pub fn test_prefix_ipv6() {
        let p = Prefix::<Ipv6Addr>::from_str("::/0").unwrap();
        assert_eq!(p.address().segments(), [0, 0, 0, 0, 0, 0, 0, 0]);
        assert_eq!(p.to_string(), "::/0");

        let p = Prefix::<Ipv6Addr>::from_str("2001:1234::/48").unwrap();
        assert_eq!(p.address().segments(), [0x2001, 0x1234, 0, 0, 0, 0, 0, 0]);
        assert_eq!(p.to_string(), "2001:1234::/48");

        let mut p = Prefix::<Ipv6Addr>::from_str("2001:1234::567/48").unwrap();
        assert_eq!(p.address().segments(), [0x2001, 0x1234, 0, 0, 0, 0, 0, 0x567]);
        assert_eq!(p.to_string(), "2001:1234::567/48");
        p.apply_mask();
        assert_eq!(p.address().segments(), [0x2001, 0x1234, 0, 0, 0, 0, 0, 0]);
        assert_eq!(p.to_string(), "2001:1234::/48");

        let mut p = Prefix::<Ipv6Addr>::from_str("2001:1234::ffff/124").unwrap();
        p.apply_mask();
        assert_eq!(p.address().segments(), [0x2001, 0x1234, 0, 0, 0, 0, 0, 0xfff0]);
        assert_eq!(p.to_string(), "2001:1234::fff0/124");

        let mut p = Prefix::<Ipv6Addr>::from_str("2001:1234::ffff/120").unwrap();
        p.apply_mask();
        assert_eq!(p.address().segments(), [0x2001, 0x1234, 0, 0, 0, 0, 0, 0xff00]);
        assert_eq!(p.to_string(), "2001:1234::ff00/120");

        match Prefix::<Ipv6Addr>::from_str("2001:1234::/130") {
            Ok(_) => assert!(false, "Should return error"),
            Err(_err) => { }
        }
    }
}