1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
use std::{
    mem,
    ops::Deref,
    sync::atomic::{AtomicUsize, Ordering},
};

use crate::RefOverflow;

/// An immutable reference to data in a `Cell`.
///
/// Access the value via `std::ops::Deref` (e.g. `*val`)
#[derive(Debug)]
pub struct CellRef<'a, T>
where
    T: ?Sized + 'a,
{
    pub(crate) flag: &'a AtomicUsize,
    pub(crate) value: &'a T,
}

/// Cast max `isize` as `usize`, so we don't have to do it in multiple places.
pub(crate) const REF_LIMIT_MAX: usize = isize::MAX as usize;

impl<'a, T> CellRef<'a, T>
where
    T: ?Sized,
{
    /// Returns a clone of this `CellRef`.
    ///
    /// This method allows handling of reference overflows, but:
    ///
    /// * Having 2 billion (32-bit system) / 9 quintillion (64-bit system)
    ///   references to an object is not a realistic scenario in most
    ///   applications.
    ///
    /// * Applications that hold `CellRef`s with an ever-increasing reference
    ///   count are not supported by this library.
    ///
    ///     Reaching `isize::MAX` may be possible with
    ///     `std::mem::forget(CellRef::clone(&r))`.
    pub fn try_clone(&self) -> Result<Self, RefOverflow> {
        let previous_value = self.flag.fetch_add(1, Ordering::Relaxed);

        let overflow = previous_value >= REF_LIMIT_MAX;
        if unlikely(overflow) {
            self.flag.fetch_sub(1, Ordering::Relaxed);
            Err(RefOverflow)
        } else {
            Ok(CellRef {
                flag: self.flag,
                value: self.value,
            })
        }
    }

    /// Makes a new `CellRef` for a component of the borrowed data which
    /// preserves the existing borrow.
    ///
    /// The `Cell` is already immutably borrowed, so this cannot fail.
    ///
    /// This is an associated function that needs to be used as
    /// `CellRef::map(...)`. A method would interfere with methods of the
    /// same name on the contents of a `CellRef` used through `Deref`.
    /// Further this preserves the borrow of the value and hence does the
    /// proper cleanup when it's dropped.
    ///
    /// # Examples
    ///
    /// This can be used to avoid pointer indirection when a boxed item is
    /// stored in the `Cell`.
    ///
    /// ```rust
    /// use rt_ref::{Cell, CellRef};
    ///
    /// let cb = Cell::new(Box::new(5));
    ///
    /// // Borrowing the cell causes the `CellRef` to store a reference to the `Box`, which is a
    /// // pointer to the value on the heap, not the actual value.
    /// let boxed_ref: CellRef<'_, Box<usize>> = cb.borrow();
    /// assert_eq!(**boxed_ref, 5); // Notice the double deref to get the actual value.
    ///
    /// // By using `map` we can let `CellRef` store a reference directly to the value on the heap.
    /// let pure_ref: CellRef<'_, usize> = CellRef::map(boxed_ref, Box::as_ref);
    ///
    /// assert_eq!(*pure_ref, 5);
    /// ```
    ///
    /// We can also use `map` to get a reference to a sub-part of the borrowed
    /// value.
    ///
    /// ```rust
    /// # use rt_ref::{Cell, CellRef};
    ///
    /// let c = Cell::new((5, 'b'));
    /// let b1: CellRef<'_, (u32, char)> = c.borrow();
    /// let b2: CellRef<'_, u32> = CellRef::map(b1, |t| &t.0);
    /// assert_eq!(*b2, 5);
    /// ```
    pub fn map<U, F>(self, f: F) -> CellRef<'a, U>
    where
        F: FnOnce(&T) -> &U,
        U: ?Sized,
    {
        let flag = unsafe { &*(self.flag as *const _) };
        let value = unsafe { &*(self.value as *const _) };

        mem::forget(self);

        CellRef {
            flag,
            value: f(value),
        }
    }
}

impl<'a, T> Deref for CellRef<'a, T>
where
    T: ?Sized,
{
    type Target = T;

    fn deref(&self) -> &T {
        self.value
    }
}

impl<'a, T> Drop for CellRef<'a, T>
where
    T: ?Sized,
{
    fn drop(&mut self) {
        self.flag.fetch_sub(1, Ordering::Release);
    }
}

impl<'a, T> Clone for CellRef<'a, T>
where
    T: ?Sized,
{
    /// Returns a clone of this `CellRef`.
    ///
    /// # Panics
    ///
    /// Panics if the number of references is `isize::MAX`:
    ///
    /// * Having 2 billion / 9 quintillion references to an object is not a
    ///   realistic scenario in most applications.
    /// * Applications that hold `CellRef`s with an ever-increasing reference
    ///   count are not supported by this library.
    ///
    ///     Reaching `isize::MAX` may be possible with
    ///     `std::mem::forget(CellRef::clone(&r))`.
    fn clone(&self) -> Self {
        self.try_clone()
            .unwrap_or_else(|e| panic!("Failed to clone `CellRef`: {e}"))
    }
}

/// Trick to mimic `std::intrinsics::unlikely` on stable Rust.
#[cold]
#[inline(always)]
fn cold() {}

#[inline(always)]
fn unlikely(cond: bool) -> bool {
    if cond {
        cold();
    }
    cond
}

#[cfg(test)]
mod tests {
    use std::{
        error::Error,
        sync::atomic::{AtomicUsize, Ordering},
    };

    use crate::RefOverflow;

    use super::{CellRef, REF_LIMIT_MAX};

    #[test]
    fn try_clone_returns_ok_when_ref_count_less_than_isize_max() {
        let flag = &AtomicUsize::new(1);
        let value = &1u32;
        let cell_ref = CellRef { flag, value };

        assert_eq!(1, cell_ref.flag.load(Ordering::SeqCst));

        let try_clone_result = cell_ref.try_clone();

        let cloned = try_clone_result.expect("try_clone_result to be ok");
        assert_eq!(2, cloned.flag.load(Ordering::SeqCst));
    }

    #[test]
    fn try_clone_returns_err_when_ref_count_equals_isize_max() {
        let flag = &AtomicUsize::new(REF_LIMIT_MAX);
        let value = &1u32;
        let cell_ref = CellRef { flag, value };

        assert_eq!(REF_LIMIT_MAX, cell_ref.flag.load(Ordering::SeqCst));

        let try_clone_result = cell_ref.try_clone();

        let e = try_clone_result.expect_err("try_clone_result to be err");
        assert_eq!(RefOverflow, e);
        assert!(e.source().is_none());

        // Ensure that the overflow is not persisted
        assert_eq!(REF_LIMIT_MAX, cell_ref.flag.load(Ordering::SeqCst));
    }

    #[test]
    fn clone_returns_cell_ref_when_ref_count_less_than_isize_max() {
        let flag = &AtomicUsize::new(1);
        let value = &1u32;
        let cell_ref = CellRef { flag, value };

        assert_eq!(1, cell_ref.flag.load(Ordering::SeqCst));

        let cloned = cell_ref.clone();

        assert_eq!(2, cell_ref.flag.load(Ordering::SeqCst));
        assert_eq!(2, cloned.flag.load(Ordering::SeqCst));
    }

    #[test]
    #[should_panic(expected = "Failed to clone `CellRef`: Ref count exceeded `isize::MAX`")]
    fn clone_panics_when_ref_count_equals_isize_max() {
        let flag = &AtomicUsize::new(REF_LIMIT_MAX);
        let value = &1u32;
        let cell_ref = CellRef { flag, value };

        assert_eq!(REF_LIMIT_MAX, cell_ref.flag.load(Ordering::SeqCst));

        let _clone = cell_ref.clone();
    }
}