1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
use crate::{here,Stats,Vecg,Vecf64};
pub use indxvec::{Indices,merge::{sortm,rank}};

impl<T,U> Vecg<T,U> for &[T] 
    where T: Copy+PartialOrd+std::fmt::Display,
        U: Copy+PartialOrd+std::fmt::Display,
        f64: From<T>, f64: From<U> {

     /// Scalar addition to a vector, creates new vec
     fn sadd(self, s:U) -> Vec<f64> {
        let sf = f64::from(s);
        self.iter().map(|&x| sf+(f64::from(x))).collect()
     }

    /// Scalar addition to a vector, creates new vec
     fn smult(self, s:U) -> Vec<f64> {
        let sf = f64::from(s);
        self.iter().map(|&x| sf*(f64::from(x))).collect()
     }

    /// Scalar product.   
    /// Must be of the same length - no error checking (for speed)
    fn dotp(self, v: &[U]) -> f64 {
        self.iter().zip(v).map(|(&xi, &vi)| f64::from(xi)*f64::from(vi)).sum::<f64>()
    }
    
    /// Cosine of angle between the two slices. 
    /// Done in one iteration for efficiency.
    fn cosine(self, v:&[U]) -> f64 {
        let (mut sxy, mut sy2) = (0_f64, 0_f64);
        let sx2: f64 = self
            .iter()
            .zip(v)
            .map(|(&tx, &uy)| {
                let x  = f64::from(tx);
                let y =  f64::from(uy);           
                sxy += x * y;
                sy2 += y * y;
                x*x
            })
            .sum();
        sxy / (sx2*sy2).sqrt()
    }

    /// Vector subtraction 
    fn vsub(self, v:&[U]) -> Vec<f64> {
        self.iter().zip(v).map(|(&xi, &vi)| f64::from(xi)-f64::from(vi)).collect()
    }

    /// Vectors difference unitised (done together for efficiency)
    fn vsubunit(self, v: &[U]) -> Vec<f64> {
        let mut sumsq = 0_f64;
        let dif = self.iter().zip(v).map(
            |(&xi, &vi)| { let d = f64::from(xi) - f64::from(vi); sumsq += d*d; d }
        ).collect::<Vec<f64>>();
        dif.smult(1_f64/sumsq.sqrt())
    } 

    /// Vector addition
    fn vadd(self, v:&[U]) -> Vec<f64> {
        self.iter().zip(v).map(|(&xi, &vi)| f64::from(xi)+f64::from(vi)).collect()
    }

    /// Euclidian distance   
    fn vdist(self, v:&[U]) -> f64 {
        self.iter()
            .zip(v)
            .map(|(&xi, &vi)| (f64::from(xi)-f64::from(vi)).powi(2))
            .sum::<f64>()
            .sqrt()
    }

    /// Euclidian distance squared  
    fn vdistsq(self, v:&[U]) -> f64 {
        self.iter()
            .zip(v)
            .map(|(&xi, &vi)| (f64::from(xi)-f64::from(vi)).powi(2))
            .sum::<f64>()
    }

    /// cityblock distance
    fn cityblockd(self, v:&[U]) -> f64 {
        self.iter()
            .zip(v)
            .map(|(&xi, &vi)|  (f64::from(xi)-f64::from(vi)).abs()) 
            .sum::<f64>()      
    }

    /// Magnitude of the cross product |a x b| = |a||b|sin(theta).
    /// Attains maximum `|a|.|b|` when the vectors are orthogonal.
    fn varea(self, v:&[U]) -> f64 {
        (self.vmagsq()*v.vmagsq() - self.dotp(v).powi(2)).sqrt()
    }

    /// Area of swept arc 
    /// = |a||b|(1-cos(theta)) = 2|a||b|D
    fn varc(self, v:&[U]) -> f64 {        
        ( v.vmagsq() * self.vmagsq() ).sqrt() - self.dotp(v)
    } 

    /// We define vector similarity S in the interval [0,1] as
    /// S = (1+cos(theta))/2
    fn vsim(self, v:&[U]) -> f64 { (1.0+self.cosine(v))/2.0 }

    /// We define vector dissimilarity D in the interval [0,1] as
    /// D = 1-S = (1-cos(theta))/2
    fn vdisim(self, v:&[U]) -> f64 { (1.0-self.cosine(v))/2.0 }

    /// Flattened lower triangular part of a covariance matrix. 
    /// m can be either mean or median vector. 
    /// Since covariance matrix is symmetric (positive semi definite), 
    /// the upper triangular part can be trivially added for all j>i by: c(j,i) = c(i,j).
    /// N.b. the indexing is always assumed to be in this order: row,column.
    /// The items of the resulting lower triangular array c[i][j] are pushed flat
    /// into a single vector in this double loop order: left to right, top to bottom 
    fn covone(self, m:&[U]) -> Vec<f64> { 
        let mut cov:Vec<f64> = Vec::new(); // flat lower triangular result array
        let vm = self.vsub(m); // zero mean vector
        vm.iter().enumerate().for_each(|(i,&thisc)|
            // generate its products up to and including the diagonal (itself)
            vm.iter().take(i+1).for_each(|&component| cov.push(thisc*component)) );
        cov
    }

    /// Kronecker product of two vectors.   
    /// The indexing is always assumed to be in this order: row,column. 
    fn kron(self, m:&[U]) -> Vec<f64> { 
        let mut krn:Vec<f64> = Vec::new(); // result vector 
        for &a in self {
            for &b in m { krn.push(f64::from(a)*f64::from(b)) }
        }
        krn
    }

    /// Outer product of two vectors.   
    /// The indexing is always assumed to be in this order: row,column. 
    fn outer(self, m:&[U]) -> Vec<Vec<f64>> { 
        let mut out:Vec<Vec<f64>> = Vec::new(); // result vector 
        for &s in self { out.push(m.smult(s)) }      
        out
    }
/*
    /// Cholesky decomposition of positive definite matrix into LL^T
    fn cholesky(self) -> Vec<f64> {
    let n = self.len();
    let mut res = vec![0.0; n];
    for i in 0..n {
        for j in 0..(i+1){
            let mut s = 0.0;
            for k in 0..j {
                s += res[i * n + k] * res[j * n + k];
            }
            res[i * n + j] = if i == j { (f64::from(self[i * n + i]) - s).sqrt() } 
            else { 1.0 / res[j * n + j] * (f64::from(self[i * n + j]) - s) };
        }
    }
    res
}
*/
    /// Joint probability density function of two pairwise matched slices 
    fn jointpdf(self,v:&[U]) -> Vec<f64> {     
        let n = self.len();
        if v.len() != n { panic!("{} argument vectors must be of equal length!",here!()) }; 
        let nf = n as f64;              
        let mut res:Vec<f64> = Vec::new();
        // collect successive pairs, upgrading all end types to common f64
        let mut spairs:Vec<Vec<f64>> = self.iter().zip(v).map(|(&si,&vi)|
            vec![f64::from(si),f64::from(vi)]).collect(); 
        // sort them to group all same pairs together for counting    
        spairs.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap()); 
        let mut count = 1_usize; // running count
        let mut lastindex = 0;
        spairs.iter().enumerate().skip(1).for_each(|(i,si)| 
            if si > &spairs[lastindex] { // new pair encountered
                res.push((count as f64)/nf); // save previous probability
                lastindex = i; // current index becomes the new one
                count = 1_usize; // reset counter
            } else { count += 1; }); 
        res.push((count as f64)/nf);  // flush the rest!
        res
    } 

    /// Joint entropy of two sets of the same length
    fn jointentropy(self, v:&[U]) -> f64 {
        let jpdf = self.jointpdf(v);
        jpdf.iter().map(|&x| -x*(x.ln()) ).sum() 
    }

    /// Dependence of &[T] &[U] variables in the range [0,1]
    /// returns 0 iff they are statistically component wise independent
    /// returns 1 when they are identical or all their values are unique
    fn dependence(self, v:&[U]) -> f64 {   
        (self.entropy() + v.entropy())/self.jointentropy(v)-1.0 
    }

    /// Independence of &[T] &[U] variables in the range [1,2]
    /// returns 2 iff they are statistically component wise independent
    fn independence(self, v:&[U]) -> f64 {   
        2.0 * self.jointentropy(v) / (self.entropy() + v.entropy()) 
    }

    /// We define median based correlation as cosine of an angle between two
    /// zero median vectors (analogously to Pearson's zero mean vectors) 
    /// # Example
    /// ```
    /// use rstats::Vecg;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// let v2 = vec![14_f64,1.,13.,2.,12.,3.,11.,4.,10.,5.,9.,6.,8.,7.];
    /// assert_eq!(v1.correlation(&v2),-0.1076923076923077);
    /// ```
    fn mediancorr(self, v: &[U]) -> f64 {
        // let (mut sy, mut sxy, mut sx2, mut sy2) = (0_f64, 0_f64, 0_f64, 0_f64);
        let zeroself = self.zeromedian()
            .unwrap_or_else(|_| panic!("{} failed to find the median",here!()));
        let zerov = v.zeromedian()
            .unwrap_or_else(|_| panic!("{} failed to find the median",here!()));
        zeroself.cosine(&zerov)
    }        

    /// Pearson's (most common) correlation. 
    /// # Example
    /// ```
    /// use rstats::Vecg;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// let v2 = vec![14_f64,1.,13.,2.,12.,3.,11.,4.,10.,5.,9.,6.,8.,7.];
    /// assert_eq!(v1.correlation(&v2),-0.1076923076923077);
    /// ```
    fn correlation(self, v: &[U]) -> f64 {
        let (mut sy, mut sxy, mut sx2, mut sy2) = (0_f64, 0_f64, 0_f64, 0_f64);
        let sx: f64 = self
            .iter()
            .zip(v)
            .map(|(&xt, &yu)| {
                let x = f64::from(xt);
                let y = f64::from(yu);
                sy += y;
                sxy += x * y;
                sx2 += x * x;
                sy2 += y * y;
                x
            })
            .sum();
        let nf = self.len() as f64;
        (sxy - sy*sx / nf) / ((sx2 - sx*sx / nf) * (sy2 - sy*sy / nf)).sqrt()
    }
    /// Kendall Tau-B correlation.
    /// Defined by: tau = (conc - disc) / sqrt((conc + disc + tiesx) * (conc + disc + tiesy))
    /// This is the simplest implementation with no sorting.
    /// # Example
    /// ```
    /// use rstats::Vecg;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// let v2 = vec![14_f64,1.,13.,2.,12.,3.,11.,4.,10.,5.,9.,6.,8.,7.];
    /// assert_eq!(v1.kendalcorr(&v2),-0.07692307692307693);
    /// ```
    fn kendalcorr(self, v:&[U]) -> f64 {
        let (mut conc, mut disc, mut tiesx, mut tiesy) = (0_i64, 0_i64, 0_i64, 0_i64); 
        for i in 1..self.len() {
            let x = f64::from(self[i]);
            let y = f64::from(v[i]);
            for j in 0..i {
                let xd = x - f64::from(self[j]);
                let yd = y - f64::from(v[j]);
                if !xd.is_normal() {
                    if !yd.is_normal() {
                        continue;
                    } else {
                        tiesx += 1;
                        continue;
                    }
                };
                if !yd.is_normal() {
                    tiesy += 1;
                    continue;
                };
                if (xd * yd).signum() > 0_f64 {
                    conc += 1
                } else {
                    disc += 1
                }
            }
        }
        (conc - disc) as f64 / (((conc + disc + tiesx) * (conc + disc + tiesy)) as f64).sqrt()
    }
    /// Spearman rho correlation.
    /// This is the simplest implementation with no sorting.
    /// # Example
    /// ```
    /// use rstats::Vecg;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// let v2 = vec![14_f64,1.,13.,2.,12.,3.,11.,4.,10.,5.,9.,6.,8.,7.];
    /// assert_eq!(v1.spearmancorr(&v2),-0.1076923076923077);
    /// ```
    fn spearmancorr(self, v: &[U]) -> f64 {
        let xvec = rank(self,true);
        let yvec = rank(v,true); // rank from crate idxvec::merge
        // It is just Pearson's correlation of usize ranks
        xvec.ucorrelation(&yvec) // using Indices trait from idxvec
    }
}

impl<T> Vecf64<T> for &[T] 
    where T: Copy+PartialOrd+std::fmt::Display,         
        f64: From<T>, f64: From<T> {

    /// scalar multiplication by f64
    fn smultf64(self, s:f64) -> Vec<f64> { 
        self.iter().map(|&x| s*(f64::from(x))).collect()
     }

    /// Vector subtraction of `&[f64]`
    fn vsubf64(self, v:&[f64]) -> Vec<f64> {
        self.iter().zip(v).map(|(&xi, &vi)| f64::from(xi)-vi).collect()
    }

    /// Vectors difference unitised (done together for efficiency)
    fn vsubunitf64(self, v:&[f64]) -> Vec<f64> {
        let mut sumsq = 0_f64;
        let dif = self.iter().zip(v).map(
            |(&xi, &vi)| { let d = f64::from(xi) - vi; sumsq += d*d; d }
        ).collect::<Vec<f64>>();
        dif.smultf64(1_f64/sumsq.sqrt())
    }

    /// Addition of `&[f64]` slice
    fn vaddf64(self, v:&[f64]) -> Vec<f64> {
        self.iter().zip(v).map(|(&xi, &vi)| f64::from(xi)+vi).collect()
    }
  
    /// Euclidian distance to `&[f64]`  
    fn vdistf64(self, v:&[f64]) -> f64 {
        self.iter()
            .zip(v)
            .map(|(&xi, &vi)| (f64::from(xi)-vi).powi(2))
            .sum::<f64>()
            .sqrt()
    }

    /// Euclidian distance to `&[f64]` squared  
    fn vdistsqf64(self, v:&[f64]) -> f64 {
        self.iter()
            .zip(v)
            .map(|(&xi, &vi)| (f64::from(xi)-vi).powi(2))
            .sum::<f64>()
    }
}