1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
use crate::{ here,functions::wsum, MStats, Med, Stats };
use anyhow::{ensure, Result};
// use std::ops::Sub;

pub use indxvec::merge::{sortm,minmax};          

impl<T> Stats for &[T] 
    where T: Copy+PartialOrd, // +Sub::<Output = T>,
        f64: From<T> {  

    /// Vector magnitude
    fn vmag(self) -> f64 {
        self.iter().map(|&x| f64::from(x).powi(2)).sum::<f64>().sqrt()
    }

    /// Vector magnitude squared (sum of squares)
    fn vmagsq(self) -> f64  {
        self.iter().map(|&x| f64::from(x).powi(2)).sum::<f64>()
    }

    /// Vector with inverse magnitude
    fn vinverse(self) -> Vec<f64> {
        let sf = 1.0/self.vmagsq();
        self.iter().map(|&x| sf*(f64::from(x))).collect()     
    }

    // negated vector (all components swap sign)
    fn negv(self) -> Vec<f64> { 
        self.iter().map(|&x| (-f64::from(x))).collect()
    }

    /// Unit vector
    fn vunit(self) -> Vec<f64> {
        let m = 1.0 / self.iter().map(|&x| f64::from(x).powi(2)).sum::<f64>().sqrt();
        self.iter().map(|&x| m*(f64::from(x))).collect() 
    }

    /// Arithmetic mean of an f64 slice
    /// # Example
    /// ```
    /// use rstats::Stats;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// assert_eq!(v1.as_slice().amean().unwrap(),7.5_f64);
    /// ```
    fn amean(self) -> Result<f64> {
        let n = self.len();
        ensure!(n > 0, "{} sample is empty!",here!());
        Ok(self.iter().map(|&x| f64::from(x)).sum::<f64>() / (n as f64))
    }

    /// Arithmetic mean and (population) standard deviation of an f64 slice
    /// # Example
    /// ```
    /// use rstats::Stats;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// let res = v1.as_slice().ameanstd().unwrap();
    /// assert_eq!(res.mean,7.5_f64);
    /// assert_eq!(res.std,4.031128874149275_f64);
    /// ```
    fn ameanstd(self) -> Result<MStats> {
        let n = self.len();
        ensure!(n > 0, "{} sample is empty!",here!());
        let mut sx2 = 0_f64;
        let mean = self
            .iter()
            .map(|&x| {
                sx2 += f64::from(x) * f64::from(x);
                f64::from(x)
            })
            .sum::<f64>() / (n as f64);
        Ok(MStats {
            mean,
            std: (sx2 / (n as f64) - mean.powi(2)).sqrt(),
        })
    }

    /// Linearly weighted arithmetic mean of an f64 slice.     
    /// Linearly descending weights from n down to one.    
    /// Time dependent data should be in the stack order - the last being the oldest.
    /// # Example
    /// ```
    /// use rstats::Stats;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// assert_eq!(v1.as_slice().awmean().unwrap(),5.333333333333333_f64);
    /// ```
    fn awmean(self) -> Result<f64> {
        let n = self.len();
        ensure!(n > 0, "{} sample is empty!", here!());
        let mut iw = (n + 1) as f64; // descending linear weights
        Ok(self
            .iter()
            .map(|&x| {
                iw -= 1.;
                iw * f64::from(x)
            })
            .sum::<f64>()
            / wsum(n))
    }

    /// Linearly weighted arithmetic mean and standard deviation of an f64 slice.    
    /// Linearly descending weights from n down to one.    
    /// Time dependent data should be in the stack order - the last being the oldest.
    /// # Example
    /// ```
    /// use rstats::Stats;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// let res = v1.as_slice().awmeanstd().unwrap();
    /// assert_eq!(res.mean,5.333333333333333_f64);
    /// assert_eq!(res.std,3.39934634239519_f64);
    /// ```
    fn awmeanstd(self) -> Result<MStats> {
        let n = self.len();
        ensure!(n > 0, "{} sample is empty!", here!());        
        let mut sx2 = 0_f64;
        let mut w = n as f64; // descending linear weights
        let mean = self
            .iter()
            .map(|&x| {
                let wx = w * f64::from(x);
                sx2 += wx * f64::from(x);
                w -= 1_f64;
                wx
            })
            .sum::<f64>()
            / wsum(n);
        Ok(MStats {
            mean: mean,
            std: (sx2 / wsum(n) - mean.powi(2)).sqrt(),
        })
    }

    /// Harmonic mean of an f64 slice.
    /// # Example
    /// ```
    /// use rstats::Stats;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// assert_eq!(v1.as_slice().hmean().unwrap(),4.305622526633627_f64);
    /// ```
    fn hmean(self) -> Result<f64> {
        let n = self.len();
        ensure!(n > 0, "{} sample is empty!", here!());        
        let mut sum = 0_f64;
        for &x in self {
            let fx = f64::from(x);
            ensure!( fx.is_normal(),"{} does not accept zero valued data!",here!());         
            sum += 1.0 / fx
        }
        Ok(n as f64 / sum)
    }
    /// Linearly weighted harmonic mean of an f64 slice.    
    /// Linearly descending weights from n down to one.    
    /// Time dependent data should be in the stack order - the last being the oldest.
    /// # Example
    /// ```
    /// use rstats::Stats;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// assert_eq!(v1.as_slice().hwmean().unwrap(),3.019546395306663_f64);
    /// ```
    fn hwmean(self) -> Result<f64> {
        let n = self.len();
        ensure!(n > 0, "{} sample is empty!", here!());
        let mut sum = 0_f64;
        let mut w = n as f64;
        for &x in self {
            let fx = f64::from(x);
            ensure!(fx.is_normal(),"{} does not accept zero valued data!",here!());
            sum += w / fx;
            w -= 1_f64;
        }
        Ok(wsum(n) / sum)
    }

    /// Geometric mean of an i64 slice.  
    /// The geometric mean is just an exponential of an arithmetic mean
    /// of log data (natural logarithms of the data items).  
    /// The geometric mean is less sensitive to outliers near maximal value.  
    /// Zero valued data is not allowed.
    /// # Example
    /// ```
    /// use rstats::Stats;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// assert_eq!(v1.as_slice().gmean().unwrap(),6.045855171418503_f64);
    /// ```
    fn gmean(self) -> Result<f64> {
        let n = self.len();
        ensure!(n > 0, "{} sample is empty!", here!());
        let mut sum = 0_f64;
        for &x in self {
            let fx = f64::from(x);
            ensure!( fx.is_normal(),"{} does not accept zero valued data!",here!());        
            sum += fx.ln()
        }
        Ok((sum / (n as f64)).exp())
    }

    /// Linearly weighted geometric mean of an i64 slice.  
    /// Descending weights from n down to one.    
    /// Time dependent data should be in the stack order - the last being the oldest.  
    /// The geometric mean is just an exponential of an arithmetic mean
    /// of log data (natural logarithms of the data items).  
    /// The geometric mean is less sensitive to outliers near maximal value.  
    /// Zero data is not allowed - would at best only produce zero result.
    /// # Example
    /// ```
    /// use rstats::Stats;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// assert_eq!(v1.as_slice().gwmean().unwrap(),4.144953510241978_f64);
    /// ```
    fn gwmean(self) -> Result<f64> {
        let n = self.len();
        ensure!(n > 0, "{} sample is empty!", here!());
        let mut w = n as f64; // descending weights
        let mut sum = 0_f64;
        for &x in self {
            let fx = f64::from(x);
            ensure!(fx.is_normal(),"{} does not accept zero valued data!",here!());
            sum += w * fx.ln();
            w -= 1_f64;
        }
        Ok((sum / wsum(n)).exp())
    }

    /// Geometric mean and std ratio of an f64 slice.  
    /// Zero valued data is not allowed.  
    /// Std of ln data becomes a ratio after conversion back.
    /// # Example
    /// ```
    /// use rstats::Stats;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// let res = v1.as_slice().gmeanstd().unwrap();
    /// assert_eq!(res.mean,6.045855171418503_f64);
    /// assert_eq!(res.std,2.1084348239406303_f64);
    /// ```
    fn gmeanstd(self) -> Result<MStats> {
        let n = self.len();
        ensure!(n > 0, "{} sample is empty!", here!());
        let mut sum = 0_f64;
        let mut sx2 = 0_f64;
        for &x in self {
            let fx = f64::from(x);
            ensure!(fx.is_normal(),"{} does not accept zero valued data!",here!());
            let lx = fx.ln();
            sum += lx;
            sx2 += lx * lx
        }
        sum /= n as f64;
        Ok(MStats {
            mean: sum.exp(),
            std: (sx2 / (n as f64) - sum.powi(2)).sqrt().exp(),
        })
    }

    /// Linearly weighted version of gmeanstd.
    /// # Example
    /// ```
    /// use rstats::Stats;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// let res = v1.as_slice().gwmeanstd().unwrap();
    /// assert_eq!(res.mean,4.144953510241978_f64);
    /// assert_eq!(res.std,2.1572089236412597_f64);
    /// ```
    fn gwmeanstd(self) -> Result<MStats> {
        let n = self.len();
        ensure!(n > 0, "{} sample is empty!", here!()); 
        let mut w = n as f64; // descending weights
        let mut sum = 0_f64;
        let mut sx2 = 0_f64;
        for &x in self {
            let fx = f64::from(x);
            ensure!(fx.is_normal(),"{} does not accept zero valued data!",here!());
            let lnx = fx.ln();
            sum += w * lnx;
            sx2 += w * lnx * lnx;
            w -= 1_f64;
        }
        sum /= wsum(n);
        Ok(MStats {
            mean: sum.exp(),
            std: (sx2 as f64 / wsum(n) - sum.powi(2)).sqrt().exp(),
        })
    }

    /// Median of a &[T] slice
    /// # Example
    /// ```
    /// use rstats::{Stats};
    /// let v1 = vec![1_u8,2,3,4,5,6,7,8,9,10,11,12,13,14];
    /// let res = &v1.median().unwrap();
    /// assert_eq!(res.median,7.5_f64);
    /// assert_eq!(res.lquartile,4.25_f64);
    /// assert_eq!(res.uquartile,10.75_f64);
    /// ```
    fn median(self) -> Result<Med> {
        let gaps = self.len()-1;
        let mid = gaps / 2;
        let quarter = gaps / 4;
        let threeq = 3 * gaps / 4;
        let v = sortm(self,true);     
        let mut result: Med = Default::default();
        result.median = if 2*mid < gaps { (f64::from(v[mid]) + f64::from(v[mid + 1])) / 2.0 }
            else { f64::from(v[mid]) };
        match gaps % 4 {
        0 => {
            result.lquartile = f64::from(v[quarter]);
            result.uquartile = f64::from(v[threeq]);
            return Ok(result) },
        1 => {
            result.lquartile = (3.*f64::from(v[quarter]) + f64::from(v[quarter+1])) / 4_f64;
            result.uquartile = (f64::from(v[threeq]) + 3.*f64::from(v[threeq+1])) / 4_f64;
            return Ok(result) },
        2 => {
            result.lquartile = (f64::from(v[quarter]) + f64::from(v[quarter+1])) / 2.;
            result.uquartile = (f64::from(v[threeq]) + f64::from(v[threeq+1])) / 2.;
            return Ok(result) },
        3 => {
            result.lquartile = (f64::from(v[quarter]) + 3.*f64::from(v[quarter+1])) / 4.;
            result.uquartile = (3.*f64::from(v[threeq]) + f64::from(v[threeq+1])) / 4.
            },
        _ => { }  
        }
        Ok(result)       
    } 

    /// Probability density function of a sorted slice with repeats
    fn pdf(self) -> Vec<f64> {     
        let n = self.len();   
        let mut res:Vec<f64> = vec![1.0;n];  
        let mut rcount = 1_f64; // running count
        let mut lastval = self[0]; // first item

        for i in 1..n { // first pass to count same values 
            if self[i] > lastval { lastval = self[i]; rcount = 1.0 } // new value                 
            else { rcount += 1.0 } // same value
            res[i] = rcount            
        }
        let nf = n as f64;
        for i in (0..n).rev() {  // second reverse pass to propagate maxima
            if self[i] < lastval { lastval = self[i]; rcount = res[i] }; // new value                
            res[i] = rcount/nf // propagate maximum count from previous item           
        } 
        // let ressum = res.iter().sum::<f64>();
        // eprintln!("Sum of probs: {}",ressum); 
        res
    } 

    /// Information (entropy) (in nats)
    fn entropy(self) -> f64 {
        let pdfv = sortm(self,true).pdf();      
        pdfv.iter().map( |&x| -x*(x.ln()) ).sum()                 
    }

    /// (Auto)correlation coefficient of pairs of successive values of (time series) f64 variable.
    /// # Example
    /// ```
    /// use rstats::Stats;
    /// let v1 = vec![1_f64,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.];
    /// assert_eq!(v1.autocorr(),0.9984603532054123_f64);
    /// ```
    fn autocorr(self) -> f64 {
        let (mut sx, mut sy, mut sxy, mut sx2, mut sy2) = (0_f64, 0_f64, 0_f64, 0_f64, 0_f64);
        let n = self.len();
        if n < 2 { panic!("{} vector is too short",here!()) }
        let mut x = f64::from(self[0]);    
        for i in 1..n {
            let y = f64::from(self[i]);
            sx += x;
            sy += y;
            sxy += x * y;
            sx2 += x * x;
            sy2 += y * y;
            x = y
        }        
        let nf = n as f64;
        (sxy - sx / nf * sy) / ((sx2 - sx / nf * sx) * (sy2 - sy / nf * sy)).sqrt()
    }
    /// Linear transform to interval [0,1]
    fn lintrans(self) -> Vec<f64> {
        let mm = minmax(self);
        let range = f64::from(mm.max)-f64::from(mm.min);
        self.iter().map(|&x|(f64::from(x)-f64::from(mm.min))/range).collect()        
    }
    /// Reconstructs the full symmetric square matrix from its lower diagonal compact form,
    /// as produced by covar, covone, wcovar
    fn symmatrix(self) -> Vec<Vec<f64>> {
        // solve quadratic equation to find the dimension of the square matrix
        let n = (((8*self.len()+1) as f64).sqrt() as usize - 1)/2;
        let mut mat = vec![vec![0_f64;n];n]; // create the square matrix 
        let mut selfindex = 0;
        for row in 0..n {     
            for column in 0..row { // excludes the diagonal 
                let this = f64::from(self[selfindex]); 
                mat[row][column] = this; // just copy the value into the lower triangle
                mat[column][row] = this; // and into transposed upper position 
                selfindex += 1 // move to the next input value
            } // this row of lower triangle finished
            mat[row][row] = f64::from(self[selfindex]);  // now the diagonal element, no transpose
            selfindex += 1 // move to the next input value
        }
        mat
    }    
 
}