1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
use crate::{Med, MStats, MutVectors, Stats, VecVecf64, Vecf64, Indices};

impl VecVecf64 for &[Vec<f64>] {
    /// acentroid = simple multidimensional arithmetic mean
    /// # Example
    /// ```
    /// use rstats::{Vecf64,VecVecf64,functions::genvec};
    /// let pts = genvec(15,15,255,30);
    /// let centre = pts.acentroid();
    /// let dist = pts.distsum(&centre);
    /// assert_eq!(dist, 4.14556218326653_f64);
    /// ```
    fn acentroid(self) -> Vec<f64> {
        let mut centre = vec![0_f64; self[0].len()];
        for v in self {
            centre.mutvadd(&v)
        }
        centre.mutsmult(1.0 / self.len() as f64);
        centre
    }

    /// hcentroid =  multidimensional harmonic mean
    /// # Example
    /// ```
    /// use rstats::{Vecf64,VecVecf64,functions::genvec};
    /// let pts = genvec(15,15,255,30);
    /// let centre = pts.hcentroid();
    /// let dist = pts.distsum(&centre);
    /// assert_eq!(dist, 5.623778191797538_f64);
    /// ```
    fn hcentroid(self) -> Vec<f64> {
        let mut centre = vec![0_f64; self[0].len()];
        // let t = self.translate(&self.acentroid());
        for v in self {
            centre.mutvadd(&v.vinverse())
        }
        centre.vinverse()       
    }

    /// Trend computes the vector connecting the geometric medians of two sets of multidimensional points.
    /// This is a robust relationship between two unordered multidimensional sets.
    /// The two sets have to be in the same space but can have different numbers of points.
    fn trend(self, eps: f64, v: Vec<Vec<f64>>) -> Vec<f64> {
        let m1 = self.gmedian(eps);
        let m2 = v.gmedian(eps);
        m2.vsub(&m1)
    }

    /// Translates the whole set by vector -m. Returns Vec of Vecs.
    /// When m is set to the geometric median, this produces the zero median form.
    /// The geometric median is invariant with respect to rotation,
    /// unlike the often misguidedly used mean (`acentroid` here), or the quasi median,
    /// both of which depend on the choice of axis.
     fn translate(self, m: &[f64]) -> Vec<Vec<f64>> {
        let mut result = Vec::new();
        for point in self {
            result.push(point.vsub(m))
        }
        result
    }

    /// For each member point, gives its sum of distances to all other points.
    fn distsums(self) -> Vec<f64> {
        let n = self.len();
        let mut dists = vec![0_f64; n]; // distances accumulator for all points
                                        // examine all unique pairings (lower triangular part of symmetric flat matrix)
        for i in 1..n {
            let thisp = &self[i];
            for j in 0..i {
                let thatp = &self[j];
                let d = thisp.vdist(&thatp); // calculate each distance relation just once
                dists[i] += d;
                dists[j] += d; // but add it to both points
            }
        }
        dists
    }

    /// The sum of distances from one member point, given by its `indx`, to all the other points in self.
    /// For all the points, use more efficient `distsums`.    
    fn distsuminset(self, indx: usize) -> f64 {
        let n = self.len();
        let mut sum = 0_f64;
        let thisp = &self[indx];
        for i in 0..n {
            if i == indx {
                continue;
            };
            sum += self[i].vdist(&thisp)
        }
        sum
    }

    /// Individual distances from any point v, typically not a member, to all the members of self.    
    fn dists(self, v: &[f64]) -> Vec<f64> {
        self.iter().map(|p| p.vdist(v)).collect()
    }

    /// The sum of distances from any single point v, typically not a member, to all the members of self.    
    /// Geometric Median is defined as the point which minimises this function.
    fn distsum(self, v: &[f64]) -> f64 {
        self.iter().map(|p| p.vdist(v)).sum::<f64>()
    }

    /// Medoid is the member point (point belonging to the set of points `self`), 
    /// which has the least sum of distances to all other points.
    /// Outlier is the point with the greatest sum of distances.
    /// In other words, they are the members nearest and furthest from the median.
    /// This function returns a four-tuple:  
    /// (medoid_distance, medoid_index, outlier_distance, outlier_index).
    /// # Example
    /// ```
    /// use rstats::{Vecf64,VecVecf64,functions::genvec};
    /// let pts = genvec(15,15,255,30);
    /// let (dm,_,_,_) = pts.medoid();
    /// assert_eq!(dm,4.812334638782327_f64);
    /// ```
    fn medoid(self) -> (f64, usize, f64, usize) {
        self.distsums().minmax()
    }

    /// Finds approximate vectors from each member point towards the geometric median.
    /// Twice as fast as doing them individually, using symmetry.
    fn eccentricities(self) -> Vec<Vec<f64>> {
        let n = self.len();
        // allocate vectors for the results
        let mut eccs = vec![vec![0_f64; self[0].len()]; n];
        let mut recips = vec![0_f64; n];
        // ecentricities vectors accumulator for all points
        // examine all unique pairings (lower triangular part of symmetric flat matrix)
        for i in 1..n {
            let thisp = &self[i];
            for j in 0..i { 
                // calculate each unit vector between any pair of points just once
                let dvmag = self[j].vdist(&thisp);             
                if !dvmag.is_normal() { continue }
                let rec = 1.0/dvmag;
                eccs[i].mutvadd(&self[j].smult(rec));
                recips[i] += rec;
                // mind the vector's opposite orientations w.r.t. to the two points!
                eccs[j].mutvsub(&self[j].smult(rec)); 
                recips[j] += rec;
            }
        }
        for i in 0..n { 
            eccs[i].mutsmult(1.0/recips[i]); 
            eccs[i].mutvsub(&self[i]) 
        }
        eccs
    }

    /// Exact eccentricity vectors from all member points by first finding the Geometric Median.
    /// Usually faster than the approximate `eccentricities` above, especially when there are many points.
    fn exacteccs(self, eps:f64) -> Vec<Vec<f64>> {        
        let mut eccs = Vec::with_capacity(self.len()); // Vectors for the results
        let gm = self.gmedian(eps);
        for v in self {
            eccs.push(gm.vsub(&v))
        }
        eccs
    }
 
    /// GM and sorted eccentricities magnitudes.
    /// Describing a set of points `self` in n dimensions
     fn sortedeccs(self, ascending:bool, eps:f64) -> ( Vec<f64>,Vec<f64> ) { 
        let mut eccs = Vec::with_capacity(self.len());       
        let gm = self.gmedian(eps);
        for v in self { // collect raw ecentricities magnitudes
            eccs.push(gm.vdist(&v)) 
        }
        ( gm, eccs.sortm(ascending) )
    }
    
    /// Weighted geometric median, sorted eccentricities magnitudes,
    /// associated cummulative probability density function in [0,1] of the weights.
    fn wsortedeccs(self, ws: &[f64], eps:f64) -> ( Vec<f64>,Vec<f64>,Vec<f64> ) { 
        let mut eccs = Vec::with_capacity(self.len()); 
        let gm = self.wgmedian(ws,eps);
        for v in self { // collect true ecentricities magnitudes
            eccs.push(gm.vdist(&v)) 
        }
        // Apply linear transform
        // eccs = eccs.lintrans();
        // create sort index of the eccs
        let index = eccs.mergesort(0,self.len());
        // pick the associated points weights in the reverse order of the sorted eccs
        let mut weights = index.unindex(true,&ws);
        let mut sumw = 0_f64;
        // accummulate the weights 
        for i in 0..weights.len() {
            sumw += weights[i]; 
            weights[i] = sumw
        }
        // divide by the sum to get cum. probabilities in [0,1]
        for i in 0..weights.len() { weights[i] /= sumw };
        ( gm, index.unindex(true,&eccs), weights )
    }

    /// Sorted cosines magnitudes,
    /// associated cummulative probability density function in [0,1] of the weights.
    /// Needs central median
    fn wsortedcos(self, medmed: &[f64], zeromed: &[f64], ws: &[f64]) -> ( Vec<f64>,Vec<f64> ) { 
        let mut coses = Vec::with_capacity(self.len());  
        for p in self { // collect coses      
            coses.push(p.vsub(&medmed).vsim(&zeromed)); 
        }
        // Apply linear transform
        // coses = coses.lintrans();
        // create sort index of the coses
        let index = coses.mergesort(0,self.len());
        // pick the associated points weights in the same order as the sorted coses
        let mut weights = index.unindex(true,&ws);
        let mut sumw = 0_f64;
        // accummulate the weights to from cpdf
        for i in 0..weights.len() {
            sumw += weights[i]; 
            weights[i] = sumw
        }
        // divide by the sum to get cum. probabilities in [0,1]
        for i in 0..weights.len() { weights[i] /= sumw };
        ( index.unindex(true,&coses), weights )
    }

    /// Vector `eccentricity` or measure of  
    /// `not being the geometric median`, added to a given member point.
    /// The true geometric median is as yet unknown.
    /// The member point in question is specified by its index `indx`.
    /// This function is suitable for a single member point. 
    fn nxmember(self, indx: usize) -> Vec<f64> {
        let n = self.len();
        let mut vsum = vec![0_f64; self[0].len()];
        let thisp = &self[indx];
        let mut recip = 0_f64;
        for i in 0..n {
            if i == indx { continue  }; // exclude this point
            let dvmag = self[i].vdist(&thisp);
            if !dvmag.is_normal() { continue } // too close to this one
            let rec = 1.0/dvmag;
            vsum.mutvadd(&self[i].smult(rec)); // add vector
            recip += rec // add separately the reciprocals
        }
        vsum.mutsmult(1.0/recip);
        vsum 
    }    

    /// Vector `eccentricity` or measure of  
    /// `not being the geometric median` for a member point.
    /// The true geometric median is as yet unknown.
    /// The true geometric median would return zero.
    /// The member point in question is specified by its index `indx`.
    /// This function is suitable for a single member point. 
    /// When eccentricities of all the points are needed, use `exacteccs` above.
    fn eccmember(self, indx: usize) -> Vec<f64> {
        self.nxmember(indx).vsub(&self[indx])
    }

    /// Eccentricity vector added to a non member point,
    /// while the true geometric median is as yet unknown. 
    /// This function is suitable for a single non-member point. 
    fn nxnonmember(self, p:&[f64]) -> Vec<f64> {
        let mut vsum = vec![0_f64; self[0].len()];
        let mut recip = 0_f64;
        for x in self { 
            let dvmag = x.vdist(&p);
            if !dvmag.is_normal() { continue } // zero distance, safe to ignore
            let rec = 1.0/dvmag;
            vsum.mutvadd(&x.smult(rec)); // add vector
            recip += rec // add separately the reciprocals    
        }
        vsum.mutsmult(1.0/recip);
        vsum
    }

    /// Eccentricity vector for a non member point,
    /// while the true geometric median is as yet unknown.
    /// Returns the eccentricity vector.
    /// The true geometric median would return zero vector.
    /// This function is suitable for a single non-member point. 
    fn eccnonmember(self, p:&[f64]) -> Vec<f64> {
        self.nxnonmember(p).vsub(&p)
    }

    /// Next approximate weighted median, from a non member point. 
    fn wnxnonmember(self, ws:&[f64], p:&[f64]) -> Vec<f64> {
        let mut vsum = vec![0_f64; self[0].len()];
        let mut recip = 0_f64;
        for i in 0..self.len() { 
            let dvmag = self[i].vdist(&p);
            if !dvmag.is_normal() { continue } // zero distance, safe to ignore
            let rec = 
            ws[i]/dvmag; // ws[i] is weigth for this point self[i]
            vsum.mutvadd(&self[i].smult(rec)); // add weighted vector
            recip += rec // add separately the reciprocals    
        }
        vsum.mutsmult(1.0/recip);
        vsum
    } 

    /// Magnitudes of all the vectors in self
    fn mags(self) -> Vec<f64> {
        let mut magsv = Vec::new();
        for v in self {
            magsv.push(v.vmag())
        }
        magsv
    } 

    /// Mean and Std (in MStats struct), Median and quartiles (in Med struct) 
    /// of scalar eccentricities of points in self.
    /// These are new robust measures of a cloud of multidimensional points (or multivariate sample).  
    fn moe(self, eps: f64) -> (MStats, Med) {
        let eccs = self.exacteccs(eps).mags();
        (eccs.ameanstd().unwrap(),eccs.median().unwrap())
    }

    /// Eccentricity defined Medoid and Outlier.
    /// This can give different results to `medoid` above, defined by sums of distances,
    /// especially for the outliers. See tests.rs.  
    /// Consider some point c and some other points, bunched up at a distance r from c.
    /// The sum of their distances will be nr. Now, spread those points around a circle of radius r from c.
    /// The sum of their distances from c will remain the same but the eccentricity of c will be much reduced.
    /// # Example
    /// ```
    /// use rstats::{Vecf64,VecVecf64,functions::genvec};
    /// pub const EPS:f64 = 1e-7;
    /// let d = 6_usize;
    /// let pt = genvec(d,24,7,13); // random test data 5x20
    /// let (_medoideccentricity,medei,_outlierecccentricity,outei) = pt.emedoid(EPS);
    /// assert_eq!(medei,10); // index of e-medoid
    /// assert_eq!(outei,20);  // index of e-outlier
    /// ```
    fn emedoid(self, eps: f64) -> (f64, usize, f64, usize) {
        self.exacteccs(eps).mags().minmax()
    }

    /// Geometric Median (gm) is the point that minimises the sum of distances to a given set of points.
    /// It has (provably) only vector iterative solutions.
    /// Search methods are slow and difficult in highly dimensional space.
    /// Weiszfeld's fixed point iteration formula had known problems with sometimes failing to converge.
    /// Especially, when the points are dense in the close proximity of the gm, or gm coincides with one of them.  
    /// However, these problems are fixed in my new algorithm here.      
    /// There will eventually be a multithreaded version.
    fn nmedian(self, eps: f64) -> Vec<f64> {
        let mut point = self.acentroid(); // start iterating 
        loop {
            let nextp = self.nxnonmember(&point);         
            if nextp.vdist(&point) < eps { return nextp }; 
            point = nextp
        } 
    }
 
    /// Possible first iteration point for geometric medians.
    /// Same as eccnonmember(origin), just saving the zero subtractions
    /// when moving from the origin
    fn firstpoint(self) -> Vec<f64> {
        let mut rsum = 0_f64;
        let mut vsum = vec![0_f64; self[0].len()];
        for thisp in self {
            let mag = thisp.vmag();
            if mag.is_normal() {  
                let invmag = 1.0_f64/mag;
                rsum += invmag;
                vsum.mutvadd(&thisp.smult(invmag)) // accumulate unit vectors
            }
        }
        vsum.smult(1.0/rsum) // scale by the sum of reciprocals
    }

    /// Secant method with recovery from divergence
    /// for finding the geometric median
    fn gmedian(self, eps: f64) -> Vec<f64> {
        let mut p1 = self.acentroid();     
        let mut p2 = self.nxnonmember(&p1); 
        let mut e1mag = p2.vdist(&p1);    
        loop {
            // will not use this np as does nmedian, using secant instead
            let mut np = self.nxnonmember(&p2); 
            let e2 = np.vsub(&p2); // new vetor error, or eccentricity
            let e2mag = e2.vmag(); 
            if e2mag < eps  { return np };  
            if e1mag > e2mag {  // eccentricity magnitude decreased, good, employ secant
                np = p2.vadd(&e2.smult(p1.vsub(&p2).vmag()/(e1mag-e2mag)));                   
            }
            else { // recovery: probably overshot the minimum, shorten the jump 
                   // e2 will already be pointing moreless back
                np = p2.vadd(&e2.smult(p1.vsub(&p2).vmag()/(e1mag+e2mag)));                    
            } 
            p1 = p2;        
            p2 = np;  
            e1mag = e2mag             
        }       
    }

    /// Secant method with recovery
    /// for finding the weighted geometric median
    fn wgmedian(self, ws: &[f64],  eps: f64) -> Vec<f64> {
        let mut p1 = self.acentroid();     
        let mut p2 = self.wnxnonmember(ws,&p1); 
        let mut e1mag = p2.vdist(&p1);    
        loop {
            // will not use this np as does nmedian, using secant instead
            let mut np = self.wnxnonmember(ws,&p2); 
            let e2 = np.vsub(&p2); // new vector error, or eccentricity
            let e2mag = e2.vmag(); 
            if e2mag < eps  { return np };  
            if e1mag > e2mag {  // eccentricity magnitude decreased, good, employ secant
                np = p2.vadd(&e2.smult(p1.vsub(&p2).vmag()/(e1mag-e2mag)));                   
            }
            else { // recovery: probably overshot the minimum, shorten the jump 
                   // e2 will already be pointing moreless back
                np = p2.vadd(&e2.smult(p1.vsub(&p2).vmag()/(e1mag+e2mag)));                    
            } 
            p1 = p2;        
            p2 = np;  
            e1mag = e2mag             
        }       
    }

    /// Flattened lower triangular part of a covariance matrix for f64 vectors in self.
    /// Since covariance matrix is symmetric (positive semi definite), 
    /// the upper triangular part can be trivially generated for all j>i by: c(j,i) = c(i,j).
    /// N.b. the indexing is always assumed to be in this order: row,column.
    /// The items of the resulting lower triangular array c[i][j] are here flattened
    /// into a single vector in this double loop order: left to right, top to bottom 
    fn covar(self, m:&[f64]) -> Vec<f64> {
        let n = self[0].len(); // dimension of the vector(s)
        let mut cov:Vec<f64> = vec![0_f64; (n+1)*n/2]; // flat lower triangular results array
  
        for thisp in self { // adding up covars for all the points
            let mut covsub = 0_usize; // subscript into the flattened array cov
            let vm = thisp.vsub(&m);  // zero mean vector
            for i in 0..n {
                let thisc = vm[i]; // ith component
                // its products up to and including the diagonal (itself)
                for j in 0..i+1 { 
                    cov[covsub] += thisc*vm[j];
                    covsub += 1
                }
            }
        }
        // now compute the means and return
        cov.mutsmult(1.0_f64/self.len()as f64);
        cov
    }  
}