1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
use crate::{
    fitting::{Likelihood, Score, MLE},
    statistics::{FisherInformation, Modes, Quantiles, ShannonEntropy, UnivariateMoments},
    univariate::binomial::Binomial,
    Convolution,
    DiscreteDistribution,
    Distribution,
    Probability,
};
use ndarray::Array2;
use spaces::discrete::Binary;
use std::fmt;

params! {
    #[derive(Copy)]
    Params {
        p: Probability<>
    }
}

pub struct Grad {
    pub p: f64,
}

#[derive(Debug, Clone, Copy)]
pub struct Bernoulli {
    pub(crate) params: Params,

    q: Probability,
    variance: f64,
}

impl Bernoulli {
    pub fn new(p: f64) -> Result<Bernoulli, failure::Error> {
        Params::new(p).map(|ps| Bernoulli {
            q: !ps.p,
            params: ps,
            variance: p * (1.0 - p),
        })
    }

    pub fn new_unchecked(p: f64) -> Bernoulli { Params::new_unchecked(p).into() }
}

impl From<Params> for Bernoulli {
    fn from(params: Params) -> Bernoulli {
        Bernoulli {
            q: !params.p,
            variance: params.p.0 * (1.0 - params.p.0),

            params,
        }
    }
}

impl Distribution for Bernoulli {
    type Support = Binary;
    type Params = Params;

    fn support(&self) -> Binary { Binary }

    fn params(&self) -> Params { self.params }

    fn cdf(&self, k: &bool) -> Probability {
        if *k {
            Probability::one()
        } else {
            Probability::zero()
        }
    }

    fn sample<R: rand::Rng + ?Sized>(&self, rng: &mut R) -> bool {
        rng.gen_bool(self.params.p.unwrap())
    }
}

impl DiscreteDistribution for Bernoulli {
    fn pmf(&self, k: &bool) -> Probability {
        match k {
            true => self.params.p,
            false => self.q,
        }
    }
}

impl UnivariateMoments for Bernoulli {
    fn mean(&self) -> f64 { self.params.p.into() }

    fn variance(&self) -> f64 { self.variance }

    fn skewness(&self) -> f64 { (1.0 - 2.0 * self.params.p.unwrap()) / self.variance.sqrt() }

    fn kurtosis(&self) -> f64 { 1.0 / self.variance - 6.0 }

    fn excess_kurtosis(&self) -> f64 { 1.0 / self.variance - 9.0 }
}

impl Quantiles for Bernoulli {
    fn quantile(&self, _: Probability) -> f64 { unimplemented!() }

    fn median(&self) -> f64 {
        match self.params.p.unwrap() {
            p if (p - 0.5).abs() < 1e-7 => 0.5,
            p if (p < 0.5) => 0.0,
            _ => 1.0,
        }
    }
}

impl Modes for Bernoulli {
    fn modes(&self) -> Vec<bool> {
        use std::cmp::Ordering::*;

        match self.params.p.partial_cmp(&self.q) {
            Some(Less) => vec![false],
            Some(Equal) => vec![false, true],
            Some(Greater) => vec![false],
            None => unreachable!(),
        }
    }
}

impl ShannonEntropy for Bernoulli {
    fn shannon_entropy(&self) -> f64 {
        let p = self.params.p.unwrap();
        let q = self.q.unwrap();

        if q.abs() < 1e-7 || (q - 1.0).abs() < 1e-7 {
            0.0
        } else {
            -q * q.ln() - p * p.ln()
        }
    }
}

impl FisherInformation for Bernoulli {
    fn fisher_information(&self) -> Array2<f64> { Array2::from_elem((1, 1), 1.0 / self.variance) }
}

impl Likelihood for Bernoulli {
    fn log_likelihood(&self, samples: &[bool]) -> f64 {
        samples.into_iter().map(|x| self.log_pmf(x)).sum()
    }
}

impl Score for Bernoulli {
    type Grad = Grad;

    fn score(&self, samples: &[bool]) -> Grad {
        Grad {
            p: samples.into_iter().map(|x| 1.0 / self.pmf(x)).sum(),
        }
    }
}

impl MLE for Bernoulli {
    fn fit_mle(xs: &[bool]) -> Result<Self, failure::Error> {
        let n = xs.len() as f64;
        let p = xs.iter().fold(0, |acc, &x| acc + x as u64) as f64 / n;

        Bernoulli::new(p)
    }
}

impl Convolution<Bernoulli> for Bernoulli {
    type Output = Binomial;

    fn convolve(self, rv: Bernoulli) -> Result<Binomial, failure::Error> {
        let p1 = self.params.p;
        let p2 = rv.params.p;

        assert_constraint!(p1 == p2)?;

        Ok(Binomial::new_unchecked(2, self.params.p))
    }
}

impl fmt::Display for Bernoulli {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Ber({})", self.params.p) }
}