1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
use crate::{
    consts::ONE_THIRD,
    params::{Loc, Shape},
    prelude::*,
};
use rand::Rng;
use spaces::real::Interval;
use std::fmt;

params! {
    Params {
        mu: Loc<f64>,
        sigma: Shape<f64>,
        zeta: Shape<f64>
    }
}

new_dist!(GeneralisedPareto<Params>);

macro_rules! get_params {
    ($self:ident) => { ($self.0.mu.0, $self.0.sigma.0, $self.0.zeta.0) }
}

impl GeneralisedPareto {
    pub fn new(mu: f64, sigma: f64, zeta: f64) -> Result<GeneralisedPareto, failure::Error> {
        Params::new(mu, sigma, zeta).map(|p| GeneralisedPareto(p))
    }

    pub fn new_unchecked(mu: f64, sigma: f64, zeta: f64) -> GeneralisedPareto {
        GeneralisedPareto(Params::new_unchecked(mu, sigma, zeta))
    }
}

impl Distribution for GeneralisedPareto {
    type Support = Interval;
    type Params = Params;

    fn support(&self) -> Interval {
        use std::cmp::Ordering::*;

        let (mu, sigma, zeta) = get_params!(self);

        match zeta.partial_cmp(&0.0).expect("Invalid value provided for `zeta`.") {
            Less => Interval::bounded(mu, mu - sigma / zeta),
            Equal | Greater => Interval::left_bounded(mu),
        }
    }

    fn params(&self) -> Params { self.0 }

    fn cdf(&self, x: &f64) -> Probability {
        let (mu, sigma, zeta) = get_params!(self);
        let z = (x - mu) / sigma;

        Probability::new_unchecked(1.0 - (1.0 + zeta * z).powf(-1.0 / zeta))
    }

    fn sample<R: Rng + ?Sized>(&self, _: &mut R) -> f64 {
        unimplemented!()
    }
}

impl ContinuousDistribution for GeneralisedPareto {
    fn pdf(&self, x: &f64) -> f64 {
        let (mu, sigma, zeta) = get_params!(self);
        let z = (x - mu) / sigma;

        (1.0 + zeta * z).powf(-1.0 / zeta - 1.0) / sigma
    }
}

impl UnivariateMoments for GeneralisedPareto {
    fn mean(&self) -> f64 {
        let (mu, sigma, zeta) = get_params!(self);

        if zeta <= 1.0 {
            undefined!("Mean is undefined for zeta <= 1.")
        } else {
            mu + sigma / (1.0 - zeta)
        }
    }

    fn variance(&self) -> f64 {
        let zeta = self.0.zeta.0;
        let sigma = self.0.sigma.0;

        if zeta <= 0.5 {
            undefined!("Variance is undefined for zeta <= 1/2.")
        } else {
            sigma * sigma / (1.0 - zeta).powi(2) / (1.0 - 2.0 * zeta)
        }
    }

    fn skewness(&self) -> f64 {
        let zeta = self.0.zeta.0;

        if zeta <= ONE_THIRD {
            undefined!("Skewness is undefined for zeta <= 1/3.")
        } else {
            2.0 * (1.0 + zeta) * (1.0 - 2.0 * zeta).sqrt() / (1.0 - 3.0 * zeta)
        }
    }

    fn excess_kurtosis(&self) -> f64 {
        let zeta = self.0.zeta.0;

        if zeta <= ONE_THIRD {
            undefined!("Skewness is undefined for zeta <= 1/3.")
        } else {
            3.0 * (1.0 - 2.0 * zeta) * (2.0 * zeta * zeta + zeta + 3.0)
                / (1.0 - 3.0 * zeta) / (1.0 - 4.0 * zeta)
                - 3.0
        }
    }
}

impl Quantiles for GeneralisedPareto {
    fn quantile(&self, _: Probability) -> f64 {
        unimplemented!()
    }

    fn median(&self) -> f64 {
        let (mu, sigma, zeta) = get_params!(self);

        mu + sigma * (2.0f64.powf(zeta) - 1.0) / zeta
    }
}

impl Entropy for GeneralisedPareto {
    fn entropy(&self) -> f64 {
        self.0.sigma.0.ln() + self.0.zeta.0 + 1.0
    }
}

impl fmt::Display for GeneralisedPareto {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let (mu, sigma, zeta) = get_params!(self);

        write!(f, "GPD({}, {}, {})", mu, sigma, zeta)
    }
}