1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
use crate::aabb::AABB;
use crate::envelope::Envelope;
use crate::point::{Point, PointExt};

/// An object that can be inserted into an r-tree.
///
/// This trait must be implemented for any object that should be inserted into an r-tree.
/// Some simple objects that already implement this trait can be found in the
/// [primitives](primitives/index.html) module.
///
/// The only property required of such an object is its [envelope](traits.Envelope.html).
/// Most simply, this method should return the [axis aligned bounding box](struct.AABB.html)
/// of the object, other envelope types may be supported in the future.
///
/// *Note*: It is a logic error if an objects envelope changes after insertion into
/// an r-tree.
///
/// # Type parameters
/// `Envelope`: The objects envelope type. At the moment, only [AABB](struct.AABB.html) is
/// feasible.
///
/// # Example implementation
/// ```
/// use rstar::{RTreeObject, AABB};
///
/// struct Player
/// {
///     name: String,
///     x_coordinate: f64,
///     y_coordinate: f64
/// }
///
/// impl RTreeObject for Player
/// {
///     type Envelope = AABB<[f64; 2]>;
///
///     fn envelope(&self) -> Self::Envelope
///     {
///         AABB::from_point([self.x_coordinate, self.y_coordinate])
///     }
/// }
///
/// fn main()
/// {
///     use rstar::{RTree, AABB};
///
///     let mut tree = RTree::new();
///
///     // Insert a few players...
///     tree.insert(Player {
///         name: "Forlorn Freeman".into(),
///         x_coordinate: 1.,
///         y_coordinate: 0.
///     });
///     tree.insert(Player {
///         name: "Sarah Croft".into(),
///         x_coordinate: 0.5,
///         y_coordinate: 0.5,
///     });
///     tree.insert(Player {
///         name: "Geralt of Trivia".into(),
///         x_coordinate: 0.,
///         y_coordinate: 2.,
///     });
///
///     // Now we are ready to ask some questions!
///     let envelope = AABB::from_point([0.5, 0.5]);
///     let likely_sarah_croft = tree.locate_in_envelope(&envelope).next();
///     println!("Found {:?} lurking around at (0.5, 0.5)!", likely_sarah_croft.unwrap().name);
///     # assert!(likely_sarah_croft.is_some());
///
///     let unit_square = AABB::from_corners([-1.0, -1.0], [1., 1.]);
///     for player in tree.locate_in_envelope(&unit_square) {
///        println!("And here is {:?} spelunking in the unit square.", player.name);
///     }
///     # assert_eq!(tree.locate_in_envelope(&unit_square).count(), 2);
/// }
/// ```
pub trait RTreeObject {
    /// The object's envelope type. Usually, [AABB](struct.AABB.html) will be the right choice.
    /// This type also defines the objects dimensionality.
    type Envelope: Envelope;

    /// Returns the object's envelope.
    ///
    /// Usually, this will return the object's [axis aligned bounding box](struct.AABB.html).
    fn envelope(&self) -> Self::Envelope;
}

/// Defines objects which can calculate their minimal distance to a point.
///
/// This trait is most notably necessary for support of [nearest_neighbor](struct.RTree#method.nearest_neighbor)
/// queries.
///
/// # Example
/// ```
/// use rstar::{RTreeObject, PointDistance, AABB};
///
/// struct Circle
/// {
///     origin: [f32; 2],
///     radius: f32,
/// }
///
/// impl RTreeObject for Circle {
///     type Envelope = AABB<[f32; 2]>;
///
///     fn envelope(&self) -> Self::Envelope {
///         let corner_1 = [self.origin[0] - self.radius, self.origin[1] - self.radius];
///         let corner_2 = [self.origin[0] + self.radius, self.origin[1] + self.radius];
///         AABB::from_corners(corner_1, corner_2)
///     }
/// }
///
/// impl PointDistance for Circle
/// {
///     fn distance_2(&self, point: &[f32; 2]) -> f32
///     {
///         let d_x = self.origin[0] - point[0];
///         let d_y = self.origin[1] - point[1];
///         let distance_to_origin = (d_x * d_x + d_y * d_y).sqrt();
///         let distance_to_ring = distance_to_origin - self.radius;
///         let distance_to_circle = f32::max(0.0, distance_to_ring);
///         // We must return the squared distance!
///         distance_to_circle * distance_to_circle
///     }
///
///     // This implementation is not required but more efficient since it
///     // omits the calculation of a square root
///     fn contains_point(&self, point: &[f32; 2]) -> bool
///     {
///         let d_x = self.origin[0] - point[0];
///         let d_y = self.origin[1] - point[1];
///         let distance_to_origin_2 = (d_x * d_x + d_y * d_y);
///         let radius_2 = self.radius * self.radius;
///         distance_to_origin_2 <= radius_2
///     }
/// }
///
///
/// fn main() {
///     let circle = Circle {
///         origin: [1.0, 0.0],
///         radius: 1.0,
///     };
///
///     assert_eq!(circle.distance_2(&[-1.0, 0.0]), 1.0);
///     assert_eq!(circle.distance_2(&[-2.0, 0.0]), 4.0);
///     assert!(circle.contains_point(&[1.0, 0.0]));
/// }
/// ```
pub trait PointDistance: RTreeObject {
    /// Returns the squared euclidean distance of an object to a point.
    fn distance_2(
        &self,
        point: &<Self::Envelope as Envelope>::Point,
    ) -> <<Self::Envelope as Envelope>::Point as Point>::Scalar;

    /// Returns true if a point is contained within this object.
    ///
    /// By default, any point returning a `distance_2` less than or equal to zero is considered to be
    /// contained within `self`. Changing this default behavior is advised if calculating the squared distance
    /// is more computational expensive a point containment check.
    fn contains_point(&self, point: &<Self::Envelope as Envelope>::Point) -> bool {
        self.distance_2(point) <= num_traits::zero()
    }

    /// Returns the squared distance to this object or `None` if the distance
    /// is larger than a given maximum value.
    ///
    /// Some algorithms do need to know an object's distance only
    /// if it is less than or equal to a maximum value. In these cases, it may be
    /// faster to calculate a lower bound of the distance first and returning
    /// early if the object cannot be closer than the given maximum.
    ///
    /// The provided default implementation will use the distance to the object's
    /// envelope as a lower bound.
    ///
    /// If performance is critical and the object's distance calculation is fast,
    /// it may be beneficial to overwrite this implementation.
    fn distance_2_if_less_or_equal(
        &self,
        point: &<Self::Envelope as Envelope>::Point,
        max_distance_2: <<Self::Envelope as Envelope>::Point as Point>::Scalar,
    ) -> Option<<<Self::Envelope as Envelope>::Point as Point>::Scalar> {
        let envelope_distance = self.envelope().distance_2(point);
        if envelope_distance <= max_distance_2 {
            let distance_2 = self.distance_2(point);
            if distance_2 <= max_distance_2 {
                return Some(distance_2);
            }
        }
        None
    }
}

impl<P> RTreeObject for P
where
    P: Point,
{
    type Envelope = AABB<P>;

    fn envelope(&self) -> AABB<P> {
        AABB::from_point(*self)
    }
}

impl<P> PointDistance for P
where
    P: Point,
{
    fn distance_2(&self, point: &P) -> P::Scalar {
        <Self as PointExt>::distance_2(self, point)
    }

    fn contains_point(&self, point: &<Self::Envelope as Envelope>::Point) -> bool {
        self == point
    }

    fn distance_2_if_less_or_equal(
        &self,
        point: &<Self::Envelope as Envelope>::Point,
        max_distance_2: <<Self::Envelope as Envelope>::Point as Point>::Scalar,
    ) -> Option<P::Scalar> {
        let distance_2 = <Self as PointExt>::distance_2(self, point);
        if distance_2 <= max_distance_2 {
            Some(distance_2)
        } else {
            None
        }
    }
}