1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
use crate::envelope::Envelope;
use crate::node::{envelope_for_children, ParentNode, RTreeNode};
use crate::object::RTreeObject;
use crate::params::{InsertionStrategy, RTreeParams};
use crate::point::{Point, PointExt};
use crate::rtree::RTree;
use num_traits::{Bounded, Zero};

/// Inserts points according to the r-star heuristic.
///
/// The r*-heuristic focusses on good insertion quality at the costs of
/// insertion performance. This strategy is best for use cases with few
/// insertions and many nearest neighbor queries.
///
/// `RStarInsertionStrategy` is used as the default insertion strategy.
/// See [InsertionStrategy](trait.InsertionStrategy.html) for more information on insertion strategies.
pub enum RStarInsertionStrategy {}

enum InsertionResult<T>
where
    T: RTreeObject,
{
    Split(RTreeNode<T>),
    Reinsert(Vec<RTreeNode<T>>, usize),
    Complete,
}

impl InsertionStrategy for RStarInsertionStrategy {
    fn insert<T, Params>(tree: &mut RTree<T, Params>, t: T)
    where
        Params: RTreeParams,
        T: RTreeObject,
    {
        use InsertionAction::*;

        enum InsertionAction<T: RTreeObject> {
            PerformSplit(RTreeNode<T>),
            PerformReinsert(RTreeNode<T>),
        };

        let first = recursive_insert::<_, Params>(tree.root_mut(), RTreeNode::Leaf(t), 0);
        let mut target_height = 0;
        let mut insertion_stack = Vec::new();
        match first {
            InsertionResult::Split(node) => insertion_stack.push(PerformSplit(node)),
            InsertionResult::Reinsert(nodes_to_reinsert, real_target_height) => {
                insertion_stack.extend(
                    nodes_to_reinsert
                        .into_iter()
                        .map(|node| PerformReinsert(node)),
                );
                target_height = real_target_height;
            }
            InsertionResult::Complete => {}
        };

        while let Some(next) = insertion_stack.pop() {
            match next {
                PerformSplit(node) => {
                    // The root node was split, create a new root and increase height
                    let new_root = ParentNode::new_root::<Params>();
                    let old_root = ::std::mem::replace(tree.root_mut(), new_root);
                    let new_envelope = old_root.envelope.merged(&node.envelope());
                    let root = tree.root_mut();
                    root.envelope = new_envelope;
                    root.children.push(RTreeNode::Parent(old_root));
                    root.children.push(node);
                    target_height += 1;
                }
                PerformReinsert(node_to_reinsert) => {
                    let root = tree.root_mut();
                    match forced_insertion::<T, Params>(root, node_to_reinsert, target_height) {
                        InsertionResult::Split(node) => insertion_stack.push(PerformSplit(node)),
                        InsertionResult::Reinsert(_, _) => {
                            panic!("Unexpected reinsert. This is a bug in rstar.")
                        }
                        InsertionResult::Complete => {}
                    }
                }
            }
        }
    }
}

fn forced_insertion<T, Params>(
    node: &mut ParentNode<T>,
    t: RTreeNode<T>,
    target_height: usize,
) -> InsertionResult<T>
where
    T: RTreeObject,
    Params: RTreeParams,
{
    node.envelope.merge(&t.envelope());
    let expand_index = choose_subtree(node, &t);

    if target_height == 0 || node.children.len() < expand_index {
        // Force insertion into this node
        node.children.push(t);
        return resolve_overflow_without_reinsertion::<_, Params>(node);
    }

    if let RTreeNode::Parent(ref mut follow) = node.children[expand_index] {
        match forced_insertion::<_, Params>(follow, t, target_height - 1) {
            InsertionResult::Split(child) => {
                node.envelope.merge(&child.envelope());
                node.children.push(child);
                resolve_overflow_without_reinsertion::<_, Params>(node)
            }
            other => other,
        }
    } else {
        unreachable!("This is a bug in rstar.")
    }
}

fn recursive_insert<T, Params>(
    node: &mut ParentNode<T>,
    t: RTreeNode<T>,
    current_height: usize,
) -> InsertionResult<T>
where
    T: RTreeObject,
    Params: RTreeParams,
{
    node.envelope.merge(&t.envelope());
    let expand_index = choose_subtree(node, &t);

    if node.children.len() < expand_index {
        // Force insertion into this node
        node.children.push(t);
        return resolve_overflow::<_, Params>(node, current_height);
    }

    let expand = if let RTreeNode::Parent(ref mut follow) = node.children[expand_index] {
        recursive_insert::<_, Params>(follow, t, current_height + 1)
    } else {
        panic!("This is a bug in rstar.")
    };

    match expand {
        InsertionResult::Split(child) => {
            node.envelope.merge(&child.envelope());
            node.children.push(child);
            resolve_overflow::<_, Params>(node, current_height)
        }
        InsertionResult::Reinsert(a, b) => {
            node.envelope = envelope_for_children(&node.children);
            InsertionResult::Reinsert(a, b)
        }
        other => other,
    }
}

fn choose_subtree<'b, T>(node: &mut ParentNode<T>, to_insert: &'b RTreeNode<T>) -> usize
where
    T: RTreeObject,
{
    let all_leaves = match node.children.first() {
        Some(RTreeNode::Leaf(_)) => return usize::max_value(),
        Some(RTreeNode::Parent(ref data)) => data
            .children
            .first()
            .map(RTreeNode::is_leaf)
            .unwrap_or(true),
        _ => return usize::max_value(),
    };

    let zero: <<T::Envelope as Envelope>::Point as Point>::Scalar = Zero::zero();
    let insertion_envelope = to_insert.envelope();
    let mut inclusion_count = 0;
    let mut min_area = <<T::Envelope as Envelope>::Point as Point>::Scalar::max_value();
    let mut min_index = 0;
    for (index, child) in node.children.iter().enumerate() {
        let envelope = child.envelope();
        if envelope.contains_envelope(&insertion_envelope) {
            inclusion_count += 1;
            let area = envelope.area();
            if area < min_area {
                min_area = area;
                min_index = index;
            }
        }
    }
    if inclusion_count == 0 {
        // No inclusion found, subtree depends on overlap and area increase
        let mut min = (zero, zero, zero);

        for (index, child1) in node.children.iter().enumerate() {
            let envelope = child1.envelope();
            let mut new_envelope = envelope;
            new_envelope.merge(&insertion_envelope);
            let overlap_increase = if all_leaves {
                // Calculate minimal overlap increase
                let mut overlap = zero;
                let mut new_overlap = zero;
                for child2 in &node.children {
                    if child1 as *const _ != child2 as *const _ {
                        let child_envelope = child2.envelope();
                        let temp1 = envelope.intersection_area(&child_envelope);
                        overlap = overlap + temp1;
                        let temp2 = new_envelope.intersection_area(&child_envelope);
                        new_overlap = new_overlap + temp2;
                    }
                }
                new_overlap - overlap
            } else {
                // Don't calculate overlap increase if not all children are leaves
                zero
            };
            // Calculate area increase and area
            let area = new_envelope.area();
            let area_increase = area - envelope.area();
            let new_min = (overlap_increase, area_increase, area);
            if new_min < min || index == 0 {
                min = new_min;
                min_index = index;
            }
        }
    }
    min_index
}

// Does never return a request for reinsertion
fn resolve_overflow_without_reinsertion<T, Params>(node: &mut ParentNode<T>) -> InsertionResult<T>
where
    T: RTreeObject,
    Params: RTreeParams,
{
    if node.children.len() > Params::MAX_SIZE {
        let off_split = split::<_, Params>(node);
        InsertionResult::Split(off_split)
    } else {
        InsertionResult::Complete
    }
}

fn resolve_overflow<T, Params>(node: &mut ParentNode<T>, current_depth: usize) -> InsertionResult<T>
where
    T: RTreeObject,
    Params: RTreeParams,
{
    if Params::REINSERTION_COUNT == 0 {
        resolve_overflow_without_reinsertion::<_, Params>(node)
    } else if node.children.len() > Params::MAX_SIZE {
        let nodes_for_reinsertion = get_nodes_for_reinsertion::<_, Params>(node);
        InsertionResult::Reinsert(nodes_for_reinsertion, current_depth)
    } else {
        InsertionResult::Complete
    }
}

fn split<T, Params>(node: &mut ParentNode<T>) -> RTreeNode<T>
where
    T: RTreeObject,
    Params: RTreeParams,
{
    let axis = get_split_axis::<_, Params>(node);
    let zero = <<T::Envelope as Envelope>::Point as Point>::Scalar::zero();
    debug_assert!(node.children.len() >= 2);
    // Sort along axis
    T::Envelope::sort_envelopes(axis, &mut node.children);
    let mut best = (zero, zero);
    let min_size = Params::MIN_SIZE;
    let mut best_index = min_size;

    for k in min_size..=node.children.len() - min_size {
        let mut first_envelope = node.children[k - 1].envelope();
        let mut second_envelope = node.children[k].envelope();
        let (l, r) = node.children.split_at(k);
        for child in l {
            first_envelope.merge(&child.envelope());
        }
        for child in r {
            second_envelope.merge(&child.envelope());
        }

        let overlap_value = first_envelope.intersection_area(&second_envelope);
        let area_value = first_envelope.area() + second_envelope.area();
        let new_best = (overlap_value, area_value);
        if new_best < best || k == min_size {
            best = new_best;
            best_index = k;
        }
    }
    let off_split = node.children.split_off(best_index);
    node.envelope = envelope_for_children(&node.children);
    RTreeNode::Parent(ParentNode::new_parent(off_split))
}

fn get_split_axis<T, Params>(node: &mut ParentNode<T>) -> usize
where
    T: RTreeObject,
    Params: RTreeParams,
{
    let mut best_goodness = <<T::Envelope as Envelope>::Point as Point>::Scalar::max_value();
    let mut best_axis = 0;
    let min_size = Params::MIN_SIZE;
    let until = node.children.len() - min_size + 1;
    for axis in 0..<T::Envelope as Envelope>::Point::DIMENSIONS {
        // Sort children along the current axis
        T::Envelope::sort_envelopes(axis, &mut node.children);
        let mut first_envelope = T::Envelope::new_empty();
        let mut second_envelope = T::Envelope::new_empty();
        for child in &node.children[..min_size] {
            first_envelope.merge(&child.envelope());
        }
        for child in &node.children[until..] {
            second_envelope.merge(&child.envelope());
        }
        for k in min_size..until {
            let mut first_modified = first_envelope;
            let mut second_modified = second_envelope;
            let (l, r) = node.children.split_at(k);
            for child in l {
                first_modified.merge(&child.envelope());
            }
            for child in r {
                second_modified.merge(&child.envelope());
            }

            let perimeter_value =
                first_modified.perimeter_value() + second_modified.perimeter_value();
            if best_goodness > perimeter_value {
                best_axis = axis;
                best_goodness = perimeter_value;
            }
        }
    }
    best_axis
}

fn get_nodes_for_reinsertion<T, Params>(node: &mut ParentNode<T>) -> Vec<RTreeNode<T>>
where
    T: RTreeObject,
    Params: RTreeParams,
{
    let center = node.envelope.center();
    // Sort with increasing order so we can use Vec::split_off
    node.children.sort_by(|l, r| {
        let l_center = l.envelope().center();
        let r_center = r.envelope().center();
        l_center
            .sub(&center)
            .length_2()
            .partial_cmp(&(r_center.sub(&center)).length_2())
            .unwrap()
    });
    let num_children = node.children.len();
    let result = node
        .children
        .split_off(num_children - Params::REINSERTION_COUNT);
    node.envelope = envelope_for_children(&node.children);
    result
}