1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
use std;

use std::collections::HashMap;
use std::fmt::Display;
use std::path::Path;

use ::opcodes::{AddressingMode, OpCode};
use assembler::lexer::{Lexer, LexerError};
use assembler::parser::{Parser, ParserError};
use assembler::token::{LexerToken, ParserToken};

#[derive(Debug, PartialEq)]
pub struct Label(u16);

#[derive(Debug)]
pub struct AssemblerError {
    message: String,
}

impl AssemblerError {
    fn unknown_label<S>(label: S) -> AssemblerError
        where S: Into<String> + std::fmt::Display
    {
        AssemblerError::from(format!("Unknown label: '{}'", label))
    }

    fn relative_offset_too_large<S>(context: S) -> AssemblerError
        where S: Into<String> + Display
    {
        AssemblerError::from(format!("Branch too far: {}", context))
    }
}

impl From<String> for AssemblerError {
    fn from(error: String) -> AssemblerError {
        AssemblerError { message: error }
    }
}

impl From<LexerError> for AssemblerError {
    fn from(error: LexerError) -> AssemblerError {
        AssemblerError { message: error.message }
    }
}

impl From<ParserError> for AssemblerError {
    fn from(error: ParserError) -> AssemblerError {
        AssemblerError { message: error.message }
    }
}

#[derive(Debug)]
pub struct CodeSegment {
    pub address: u16,
    pub code: Vec<u8>,
}

pub struct Assembler {
    symbol_table: HashMap<String, Label>,
}

impl Assembler {
    pub fn new() -> Assembler {
        Assembler { symbol_table: HashMap::new() }
    }

    pub fn assemble_string<S, O>(&mut self,
                                 code: S,
                                 offset: O)
                                 -> Result<Vec<CodeSegment>, AssemblerError>
        where S: Into<String>,
              O: Into<Option<u16>>
    {
        let code = code.into();
        let mut lexer = Lexer::new();
        let tokens = lexer.lex_string(code)?;
        let mut parser = Parser::new();
        let tokens = parser.parse(tokens)?;

        Ok(self.assemble(tokens, offset)?)
    }

    pub fn assemble_file<P, O>(&mut self,
                               path: P,
                               offset: O)
                               -> Result<Vec<CodeSegment>, AssemblerError>
        where P: AsRef<Path>,
              O: Into<Option<u16>>
    {
        let mut lexer = Lexer::new();
        let tokens = lexer.lex_file(path)?;
        let mut parser = Parser::new();
        let tokens = parser.parse(tokens)?;

        Ok(self.assemble(tokens, offset)?)
    }

    fn assemble<O>(&mut self,
                   tokens: Vec<ParserToken>,
                   offset: O)
                   -> Result<Vec<CodeSegment>, AssemblerError>
        where O: Into<Option<u16>>
    {
        let mut addr: u16 = offset.into().unwrap_or(0);

        // First, index the labels so we have addresses for them
        self.index_labels(&tokens, addr);

        // Now assemble the code
        let mut result = Vec::new();
        let mut last_addressing_mode = AddressingMode::Absolute;
        let mut current_segment = CodeSegment {
            address: addr,
            code: Vec::new(),
        };

        for token in tokens {
            // Push an opcode into the output and increment our address
            // offset
            if let ParserToken::OpCode(opcode) = token {
                current_segment.code.push(opcode.code);
                addr += opcode.length as u16;
                last_addressing_mode = opcode.mode;
            } else if let ParserToken::OrgDirective(org_addr) = token {
                if current_segment.code.len() > 0 {
                    result.push(current_segment);
                }
                current_segment = CodeSegment {
                    address: org_addr,
                    code: Vec::new(),
                };
                addr = org_addr;
            } else if let ParserToken::RawByte(byte) = token {
                // Push raw bytes directly into the output
                current_segment.code.push(byte);
            } else if let ParserToken::RawBytes(bytes) = token {
                // Push raw bytes directly into output
                for b in &bytes {
                    current_segment.code.push(*b);
                }
            } else if let ParserToken::LabelArg(ref label) = token {
                // Labels as arguments should be in the symbol table, look
                // it up and calculate the address direction/location
                if let Some(&Label(label_addr)) = self.symbol_table.get(label) {
                    if last_addressing_mode == AddressingMode::Absolute {
                        let low_byte = (label_addr & 0xFF) as u8;
                        let high_byte = ((label_addr >> 8) & 0xFF) as u8;

                        current_segment.code.push(low_byte);
                        current_segment.code.push(high_byte);
                    } else {
                        // Its relative.. lets generate a relative branch
                        if addr > label_addr {
                            let distance = (label_addr as i16 - addr as i16) as i8;
                            if distance < -128 || distance > 127 {
                                return Err(AssemblerError::relative_offset_too_large(format!("Attempted jump to {} at {:04X}", label, addr)));
                            }
                            current_segment.code.push(distance as u8);
                        } else {
                            let distance = label_addr - addr;
                            if distance > 127 {
                                return Err(AssemblerError::relative_offset_too_large(format!("Attempted jump to {} at {:04X}", label, addr)));
                            }
                            current_segment.code.push(distance as u8);
                        }
                    }
                } else {
                    return Err(AssemblerError::unknown_label(label.clone()));
                }
            }
        }

        result.push(current_segment);

        Ok(result)
    }

    /// Stores all labels in the code in a Symbol table for lookup later
    fn index_labels(&mut self, tokens: &[ParserToken], offset: u16) {
        let mut addr: u16 = offset;
        let mut last_addressing_mode = AddressingMode::Absolute;

        for token in tokens {
            if let &ParserToken::Label(ref label) = token {
                // Insert a label with the specified memory address
                // as its offset
                self.symbol_table.insert(label.clone(), Label(addr));
            } else if let &ParserToken::OpCode(opcode) = token {
                // Add the length of this opcode to our
                // address offset
                addr += opcode.length as u16;
                last_addressing_mode = opcode.mode;
            } else if let &ParserToken::OrgDirective(new_addr) = token {
                addr = new_addr
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn can_assemble_basic_code() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            LDA $4400
        ",
                             None)
            .unwrap();

        assert_eq!(&[0xAD, 0x00, 0x44], &segments[0].code[..]);
    }

    #[test]
    fn can_jump_to_label_behind() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            MAIN LDA $4400
            PHA
            JMP MAIN
        ",
                             None)
            .unwrap();

        assert_eq!(&[0xAD, 0x00, 0x44, 0x48, 0x4C, 0x00, 0x00],
                   &segments[0].code[..]);
    }

    #[test]
    fn can_jump_to_label_with_colon_behind() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            MAIN:
                LDA $4400
                PHA
                JMP MAIN
        ",
                             None)
            .unwrap();

        assert_eq!(&[0xAD, 0x00, 0x44, 0x48, 0x4C, 0x00, 0x00],
                   &segments[0].code[..]);
    }

    #[test]
    fn can_jump_to_label_ahead() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            JMP MAIN
            PHA
            LDX #15
            MAIN LDA $4400
            RTS
        ",
                             None)
            .unwrap();

        assert_eq!(&[0x4C, 0x06, 0x00, 0x48, 0xA2, 0x0F, 0xAD, 0x00, 0x44, 0x60],
                   &segments[0].code[..]);
    }

    #[test]
    fn can_use_variables() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            MAIN_ADDRESS = $0000
            MAIN:
            LDX #15
            JMP MAIN_ADDRESS
        ",
                             None)
            .unwrap();

        assert_eq!(&[0xA2, 0x0F, 0x4C, 0x00, 0x00], &segments[0].code[..]);
    }

    #[test]
    fn can_use_variables_assigned_to_variables() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            MAIN_ADDRESS = $0000
            MAIN_ADDRESS_INDIRECT_ONE = MAIN_ADDRESS
            MAIN_ADDRESS_INDIRECT_TWO = MAIN_ADDRESS_INDIRECT_ONE
            MAIN:
            LDX #15
            JMP MAIN_ADDRESS_INDIRECT_TWO
        ",
                             None)
            .unwrap();

        assert_eq!(&[0xA2, 0x0F, 0x4C, 0x00, 0x00], &segments[0].code[..]);
    }

    #[test]
    fn can_assemble_clearmem_implementation() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            CLRMEM  LDA #$00
                    TAY             
            CLRM1   STA ($FF),Y
                    INY             
                    DEX             
                    BNE CLRM1       
                    RTS             
        ",
                             None)
            .unwrap();

        assert_eq!(&[0xA9, 0x00, 0xA8, 0x91, 0xFF, 0xC8, 0xCA, 0xD0, 0xFA, 0x60],
                   &segments[0].code[..]);
    }

    #[test]
    fn can_assemble_clearmem_implementation_that_jumps_forward_and_is_lowercase() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            jmp     clrmem
            lda     #$00
            beq     clrm1
            nop
            nop
            clrm1   sta ($ff),y
                    iny             
                    dex             
                    bne clrm1       
                    rts             
            clrmem  lda #$00
                    tay             
            jmp     clrm1
        ",
                             None)
            .unwrap();

        assert_eq!(&[0x4C, 0x10, 0x00, 0xA9, 0x00, 0xF0, 0x02, 0xEA, 0xEA, 0x91, 0xFF, 0xC8,
                     0xCA, 0xD0, 0xFA, 0x60, 0xA9, 0x00, 0xA8, 0x4C, 0x09, 0x00],
                   &segments[0].code[..]);
    }

    #[test]
    fn can_assemble_clearmem_implementation_that_jumps_forward() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            JMP     CLRMEM
            LDA     #$00
            BEQ     CLRM1
            NOP
            NOP
            BRK
            CLRM1   STA ($FF),Y
                    INY             
                    DEX             
                    BNE CLRM1       
                    RTS             
            CLRMEM  LDA #$00
                    TAY             
            JMP     CLRM1
        ",
                             None)
            .unwrap();

        assert_eq!(&[0x4C, 0x11, 0x00, 0xA9, 0x00, 0xF0, 0x03, 0xEA, 0xEA, 0x00, 0x91, 0xFF,
                     0xC8, 0xCA, 0xD0, 0xFA, 0x60, 0xA9, 0x00, 0xA8, 0x4C, 0x0A, 0x00],
                   &segments[0].code[..]);
    }

    #[test]
    fn can_use_variables_for_indirect_addressing() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            MAIN_ADDRESS = $0000
            MAIN:
            LDX #15
            LDA (MAIN_ADDRESS),Y
        ",
                             None)
            .unwrap();

        assert_eq!(&[0xA2, 0x0F, 0xB1, 0x00, 0x00], &segments[0].code[..]);
    }

    #[test]
    fn can_assign_code_segments_to_different_memory_addresses() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            .ORG $C000
            LDA #$FF
            STA $2000

            .ORG $100
            LDA #$AA
            STA $2001
        ",
                             None)
            .unwrap();

        assert_eq!(0xC000, segments[0].address);
        assert_eq!(0x0100, segments[1].address);
    }

    #[test]
    fn can_jump_between_code_segments() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            .ORG $C000
            JMP CALLBACK

            .ORG $2000
            LDA #$AA
            STA $2001

            CALLBACK
            LDX #$0A
        ",
                             None)
            .unwrap();

        assert_eq!(0xC000, segments[0].address);
        assert_eq!(0x2000, segments[1].address);

        assert_eq!(0x05, segments[0].code[0x01]);
        assert_eq!(0x20, segments[0].code[0x02]);
    }

    #[test]
    fn can_dump_raw_bytes() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            .ORG $C000

            .BYTE #$40, #10, #$0A
        ",
                             None)
            .unwrap();

        assert_eq!(&[64, 10, 10], &segments[0].code[..]);
    }

    #[test]
    fn can_dump_single_raw_byte() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            .ORG $C000

            .BYTE #$FF
        ",
                             None)
            .unwrap();

        assert_eq!(&[255], &segments[0].code[..]);
    }

    #[test]
    fn can_dump_bytes_with_other_code() {
        let mut assembler = Assembler::new();
        let segments = assembler.assemble_string("
            .ORG $C000
            JMP CALLBACK
            .BYTE #$0A

            .ORG $2000
            LDA #$AA
            STA $2001
            .BYTE #$FE, #$CB

            CALLBACK
            LDX #$0A
        ",
                             None)
            .unwrap();

        assert_eq!(0x0A, segments[0].code[3]);
        assert_eq!(&[0xFE, 0xCB], &segments[1].code[5..7]);

        assert_eq!(0xC000, segments[0].address);
        assert_eq!(0x2000, segments[1].address);

        assert_eq!(0x05, segments[0].code[0x01]);
        assert_eq!(0x20, segments[0].code[0x02]);
    }
}