1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/*
 * Copyright (c) 2017 Frank Fischer <frank-fischer@shadow-soft.de>
 *
 * This program is free software: you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see  <http://www.gnu.org/licenses/>
 */

//! A linked-list based graph implementation.
//!
//! This is an efficient default implementation of a graph.
//!
//! `LinkedListGraph` provides directed arc access (i.e. implements
//! `Network`).
//!
//! Node and edge data are stored in an array (Vec), nodes and edges
//! are identified by indices. Forward edges have even indices,
//! backward edges have the odd indices directly following the
//! corresponding forward edge. The external edge index is the edge
//! index shifted right by one bit (the lsb is removed), but a user
//! should not rely on that. The node and edge indices can be
//! retrieved using the `IndexGraph` and `IndexNetwork` traits.
//!
//! `LinkedListGraph` can be constructed (it implements `Builder`),
//! but nodes and edges cannot be removed.

use graph::{self, Graph, Digraph, Network, IndexGraph, IndexNetwork};
use builder::Builder;

use num::traits::{PrimInt, Unsigned};
use num::iter::{Range, RangeStep, range, range_step};

use std::hash::{Hash, Hasher};
use std::fmt;

/// Node of a linked list graph.
///
/// This is basically a newtype of the node index.
#[derive(PartialEq, Eq, Clone, Copy, Debug, Hash)]
pub struct Node<ID=u32>(ID)
    where ID: PrimInt + Unsigned;

impl<ID> graph::Node for Node<ID> where ID: PrimInt + Unsigned {}

impl<ID> fmt::Display for Node<ID>
    where ID: PrimInt + Unsigned + fmt::Display
{
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(f, "{}", self.0)
    }
}

impl<ID> Node<ID>
    where ID: PrimInt + Unsigned
{
    pub fn index(&self) -> usize {
        self.0.to_usize().unwrap()
    }
}

/// Edge of a linked list graph.
///
/// This is basically a newtype of the *arc* index. Note that
/// `e == g.reverse(e)`.
#[derive(Eq, Clone, Copy, Debug)]
pub struct Edge<ID=u32>(ID) where ID: PrimInt + Unsigned;

impl<ID> PartialEq for Edge<ID>
    where ID: PrimInt + Unsigned
{
    fn eq(&self, other: &Self) -> bool {
        (self.0 >> 1) == (other.0 >> 1)
    }
}

impl<ID> graph::Edge for Edge<ID> where ID: PrimInt + Unsigned {}

impl<ID> fmt::Display for Edge<ID>
    where ID: PrimInt + Unsigned + fmt::Display
{
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(f, "{}{}",
               if (self.0 & ID::one()).is_zero() { "+" } else { "-" },
               self.0 >> 1)
    }
}

impl<ID> Hash for Edge<ID>
    where ID: PrimInt + Unsigned + Hash
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        (self.0 >> 1).hash(state)
    }
}

impl<ID> Edge<ID>
    where ID: PrimInt + Unsigned
{
    pub fn index(&self) -> usize {
        (self.0 >> 1).to_usize().unwrap()
    }
}


/// The linked list based graph data structure.
#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
pub struct LinkedListGraph<ID=u32> {
    /// List of nodes.
    nodes: Vec<NodeData<ID>>,
    /// List of edges.
    edges: Vec<EdgeData<ID>>,
}

/// Data for a node in a linked list graph.
#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
struct NodeData<ID> {
    /// The first adjacent edge.
    first: ID,
}

/// Data for an edge in the linked list graph.
#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
struct EdgeData<ID> {
    /// The sink node.
    snk: ID,
    /// The next arc adjacent to the source node.
    next: ID,
}


/// An iterator over edges adjacent to some node.
pub struct NeighIter<'a, ID: 'a> {
    edge: ID,
    edges: &'a [EdgeData<ID>],
}

impl<'a, ID> Iterator for NeighIter<'a, ID>
    where ID: PrimInt + Unsigned
{
    type Item = (Edge<ID>, Node<ID>);

    fn next(&mut self) -> Option<Self::Item> {
        if self.edge != ID::max_value() {
            let edge = self.edge;
            self.edge = self.edges[edge.to_usize().unwrap()].next;
            Some((Edge(edge), Node(self.edges[edge.to_usize().unwrap()].snk)))
        } else {
            None
        }
    }
}


/// An iterator over all nodes of a linked list graph.
pub struct NodeIter<ID>(Range<ID>);

impl<ID> Iterator for NodeIter<ID>
    where ID: PrimInt + Unsigned
{
    type Item = Node<ID>;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(Node)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
}

/// An iterator over all edges of a linked list graph.
///
/// This iterator only returns the forward edges.
pub struct EdgeIter<ID>(RangeStep<ID>);

impl<ID> Iterator for EdgeIter<ID>
    where ID: PrimInt + Unsigned
{
    type Item = Edge<ID>;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(Edge)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
}

impl<'a, ID> Graph<'a> for LinkedListGraph<ID>
    where ID: 'a + PrimInt + Unsigned
{
    type Node = Node<ID>;
    type Edge = Edge<ID>;
    type NodeIter = NodeIter<ID>;
    type EdgeIter = EdgeIter<ID>;
    type NeighIter = NeighIter<'a, ID>;
    type Builder = Self;

    fn num_nodes(&self) -> usize {
        self.nodes.len()
    }

    fn num_edges(&self) -> usize {
        self.edges.len() / 2
    }

    fn enodes(&self, e: Self::Edge) -> (Self::Node, Self::Node) {
        let eid = e.0.to_usize().unwrap();
        (Node(self.edges[eid | 1].snk), Node(self.edges[eid & !1].snk))
    }

    fn nodes(&'a self) -> Self::NodeIter {
        NodeIter(range(ID::zero(), ID::from(self.num_nodes()).unwrap()))
    }

    fn edges(&self) -> Self::EdgeIter {
        EdgeIter(range_step(ID::zero(), ID::from(self.edges.len()).unwrap(), ID::from(2).unwrap()))
    }

    fn neighs(&'a self, u: Self::Node) -> Self::NeighIter {
        NeighIter {
            edge: self.nodes[u.index()].first,
            edges: &self.edges,
        }
    }
}


/// An iterator over all edges leaving a certain node.
pub struct OutEdgeIter<'a, ID: 'a>(NeighIter<'a, ID>);

impl<'a, ID> Iterator for OutEdgeIter<'a, ID>
    where ID: 'a + PrimInt + Unsigned
{
    type Item = (Edge<ID>, Node<ID>);
    fn next(&mut self) -> Option<Self::Item> {
        while let Some((e,v)) = self.0.next() {
            if (e.0 & ID::one()).is_zero() {
                return Some((e,v))
            }
        }
        None
    }
}

/// An iterator over all edges entering a certain node.
pub struct InEdgeIter<'a, ID: 'a>(NeighIter<'a, ID>);

impl<'a, ID> Iterator for InEdgeIter<'a, ID>
    where ID: 'a + PrimInt + Unsigned
{
    type Item = (Edge<ID>, Node<ID>);
    fn next(&mut self) -> Option<Self::Item> {
        while let Some((e,v)) = self.0.next() {
            if !(e.0 & ID::one()).is_zero() {
                return Some((e,v))
            }
        }
        None
    }
}

impl<'a, ID> Digraph<'a> for LinkedListGraph<ID>
    where ID: 'a + PrimInt + Unsigned,
{
    type OutEdgeIter = OutEdgeIter<'a, ID>;

    type InEdgeIter = InEdgeIter<'a, ID>;

    fn src(&self, e: Self::Edge) -> Self::Node {
        Node(self.edges[e.0.to_usize().unwrap() | 1].snk)
    }

    fn snk(&self, e: Self::Edge) -> Self::Node {
        Node(self.edges[e.0.to_usize().unwrap() & !1].snk)
    }

    fn outedges(&'a self, u: Self::Node) -> Self::OutEdgeIter {
        OutEdgeIter(self.neighs(u))
    }

    fn inedges(&'a self, u: Self::Node) -> Self::InEdgeIter {
        InEdgeIter(self.neighs(u))
    }
}

impl<'a, ID> Network<'a> for LinkedListGraph<ID>
    where ID: 'a + PrimInt + Unsigned
{
    fn is_reverse(&self, e: Self::Edge, f: Self::Edge) -> bool {
        e.0 ^ f.0 == ID::one()
    }

    fn reverse(&self, e: Self::Edge) -> Self::Edge {
        Edge(e.0 ^ ID::one())
    }

    fn is_forward(&self, e: Self::Edge) -> bool {
        (e.0 & ID::one()).is_zero()
    }
}

impl<'a, ID> IndexGraph<'a> for LinkedListGraph<ID>
    where ID: 'a + PrimInt + Unsigned
{
    fn node_id(&self, u: Self::Node) -> usize {
        u.index()
    }

    fn id2node(&self, id: usize) -> Self::Node {
        assert!(id < self.nodes.len(), "Invalid node id");
        Node(ID::from(id).unwrap())
    }

    fn edge_id(&self, e: Self::Edge) -> usize {
        e.index()
    }

    fn id2edge(&self, id: usize) -> Self::Edge {
        assert!(id << 1 < self.edges.len(), "Invalid edge id");
        Edge(ID::from(id << 1).unwrap())
    }
}

impl<'a, ID> IndexNetwork<'a> for LinkedListGraph<ID>
    where ID: 'a + PrimInt + Unsigned
{
    fn id2biedge(&self, id: usize) -> Self::Edge {
        assert!(id < self.edges.len(), "Invalid biedge id");
        Edge(ID::from(id).unwrap())
    }

    fn biedge_id(&self, a: Self::Edge) -> usize {
        a.0.to_usize().unwrap()
    }
}

impl<ID> Builder for LinkedListGraph<ID>
    where ID: PrimInt + Unsigned
{
    type Graph = Self;
    type Node = Node<ID>;
    type Edge = Edge<ID>;

    fn with_capacities(nnodes: usize, nedges: usize) -> Self {
        LinkedListGraph {
            nodes: Vec::with_capacity(nnodes),
            edges: Vec::with_capacity(nedges),
        }
    }

    fn reserve(&mut self, nnodes: usize, nedges: usize) {
        self.nodes.reserve(nnodes);
        self.edges.reserve(nedges);
    }

    fn add_node(&mut self) -> Self::Node {
        assert!(self.nodes.len() + 1 < ID::max_value().to_usize().unwrap(), "Node capacity exceeded");
        let id = self.nodes.len();
        self.nodes.push(NodeData { first: ID::max_value() });
        Node(ID::from(id).unwrap())
    }

    fn add_edge(&mut self, u: Self::Node, v: Self::Node) -> Self::Edge {
        assert!(self.edges.len() + 2 < ID::max_value().to_usize().unwrap(), "Edge capacity exceeded");
        let eid = ID::from(self.edges.len()).unwrap();
        let uid = u.0.to_usize().unwrap();
        let vid = v.0.to_usize().unwrap();
        self.edges.push(EdgeData { snk: v.0, next: self.nodes[uid].first });
        self.edges.push(EdgeData { snk: u.0, next: self.nodes[vid].first });
        self.nodes[uid].first = eid;
        self.nodes[vid].first = eid + ID::one();
        Edge(eid)
    }

    fn node2id(&self, u: Self::Node) -> usize {
        IndexGraph::node_id(self, u)
    }

    fn edge2id(&self, e: Self::Edge) -> usize {
        IndexGraph::edge_id(self, e)
    }

    fn to_graph(self) -> Self {
        self
    }
}

impl<ID> LinkedListGraph<ID>
    where ID: PrimInt + Unsigned
{
    pub fn new() -> LinkedListGraph<ID> {
        LinkedListGraph {
            nodes: vec![],
            edges: vec![],
        }
    }
}

impl<ID> Default for LinkedListGraph<ID>
    where ID: PrimInt + Unsigned
{
    fn default() -> Self {
        LinkedListGraph::new()
    }
}

#[cfg(test)]
mod tests {
    use classes::*;
    use std::cmp::{min, max};
    use {Graph, Digraph, IndexGraph, Network, LinkedListGraph};

    #[test]
    fn test_graph() {
        const N: usize = 7;
        let g = cycle::<LinkedListGraph>(N);

        assert_eq!(g.num_nodes(), N);
        assert_eq!(g.num_edges(), N);

        let mut balances = nodevec![&g; 0];

        for u in g.nodes() {
            balances[u] = u.index();
        }

        for u in g.nodes() {
            assert_eq!(balances[u], u.index());
        }

        for u in g.nodes() {
            let mut neighs: Vec<_> = g.neighs(u).collect();

            for &(e,v) in &neighs {
                assert!((g.enodes(e) == (u,v)) || (g.enodes(e) == (v,u)));
            }

            neighs.sort_by_key(|&(_,u)| u.index());

            let x = (u.index()+N-1) % N;
            let y = (u.index()+1) % N;
            assert_eq!(neighs.iter().map(|&(_,v)| v).collect::<Vec<_>>(),
                       vec![g.id2node(min(x,y)),g.id2node(max(x,y))]);
        }
    }

    #[test]
    fn test_edge_vec() {
        let g = cycle::<LinkedListGraph>(7);

        let mut x = edgevec![&g; 0];
        for (i,e) in g.edges().enumerate() {
            x[e] = i;
        }

        for u in g.nodes() {
            for (e, _) in g.neighs(u) {
                assert_eq!(x[e], e.index());
            }
        }
    }

    #[test]
    fn test_digraph() {
        for g in [cycle::<LinkedListGraph>(7), peterson(), hypercube(5)].into_iter() {
            for u in g.nodes() {
                for (e, v) in g.outedges(u) {
                    assert_eq!(u, g.src(e));
                    assert_eq!(v, g.snk(e));
                }
                for (e, v) in g.inedges(u) {
                    assert_eq!(v, g.src(e));
                    assert_eq!(u, g.snk(e));
                }
            }
        }
    }

    #[test]
    fn test_network() {
        for g in [cycle::<LinkedListGraph>(7), peterson(), hypercube(5)].into_iter() {
            for u in g.nodes() {
                for (e, _) in g.outedges(u) {
                    assert!(g.is_forward(e));
                }
                for (e, _) in g.inedges(u) {
                    assert!(g.is_backward(e));
                }
                for (e, _) in g.neighs(u) {
                    assert_eq!(g.is_forward(e), u == g.src(e));
                }
            }

            for e in g.edges() {
                assert!(g.is_forward(e));
                assert_eq!(e, e);
                assert_eq!(e, g.reverse(e));
                assert!(g.is_reverse(e, g.reverse(e)));
                assert!(g.is_reverse(g.reverse(e), e));
                assert!(!g.is_reverse(e, e));
                assert!(g.is_forward(g.forward(e)));
                assert!(g.is_backward(g.backward(e)));
            }
        }
    }

    #[cfg(feature="serialize")]
    mod serialize {
        extern crate serde_json;
        use super::*;

        #[test]
        fn test_serde() {
            let g = peterson::<LinkedListGraph>();

            let serialized = serde_json::to_string(&g).unwrap();

            println!("serialized = {}", serialized);

            let h: LinkedListGraph = serde_json::from_str(&serialized).unwrap();

            assert_eq!(g.num_nodes(), h.num_nodes());
            assert_eq!(g.num_edges(), h.num_edges());
            for e in g.edges() {
                let f = h.id2edge(g.edge_id(e));
                assert_eq!(g.node_id(g.src(e)), h.node_id(h.src(f)));
                assert_eq!(g.node_id(g.snk(e)), h.node_id(h.snk(f)));
            }
        }

        #[test]
        fn test_serialize() {
            use Builder;
            let mut g = LinkedListGraph::<u32>::new();

            let nodes = g.add_nodes(5);
            g.add_edge(nodes[0], nodes[1]);
            g.add_edge(nodes[0], nodes[2]);
            g.add_edge(nodes[1], nodes[4]);
            g.add_edge(nodes[2], nodes[3]);

            let serialized = serde_json::to_string(&g).unwrap();
            let g2: LinkedListGraph<u32> = serde_json::from_str(&serialized).unwrap();

            assert_eq!(g.num_nodes(), g2.num_nodes());
            let mut edges = g2.edges().map(|e| {
                let (u, v) = g2.enodes(e);
                let (u, v) = (IndexGraph::node_id(&g2, u),
                              IndexGraph::node_id(&g2, v));
                (min(u,v), max(u,v))
            }).collect::<Vec<_>>();
            edges.sort();
            assert_eq!(edges, vec![(0,1), (0,2), (1,4), (2,3)]);
        }
    }
}