1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
 * Copyright (c) 2018, 2020 Frank Fischer <frank-fischer@shadow-soft.de>
 *
 * This program is free software: you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see  <http://www.gnu.org/licenses/>
 */

//! Abstraction of neighboring edges.
//!
//! This module implements the arguably simplest representation of a graph: for
//! each node the list of adjacent edges and nodes. No further information like
//! the number of nodes or edges in a graph is available.
//!
//! The purpose of the trait `Adjacencies` is therefore to abstract over the concept
//! if adjacent edges and nodes. Standard examples are "all edges" (in the
//! undirected sense), "incoming edges" and "outgoing edges" represented by the structs
//! `Neighbors`, `InEdges` and `OutEdges`.
//!
//! Some algorithms (e.g. breadth-first search or depth-first search) can be
//! described in terms of adjacencies only.
//!
//! # Example
//!
//! ```
//! use rs_graph::classes;
//! use rs_graph::Net;
//! use rs_graph::traits::*;
//! use rs_graph::adjacencies::*;
//!
//! let g = classes::peterson::<Net>();
//!
//! let neighs = Neighbors(&g);
//! let neighs = neighs.filter(|&(e, _)| {
//!   let (u,v) = g.enodes(e);
//!   (g.node_id(u) < 5) == (g.node_id(v) < 5)
//! });
//! for u in g.nodes() {
//!     assert_eq!(neighs.neighs(u).count(), 2);
//! }
//! ```

use crate::traits::{Directed, GraphType, Undirected};

/// Iterator over incident edges.
pub struct IncidenceIter<'a: 'g, 'g, G>(pub &'g G, pub Option<G::Incidence>)
where
    G: Adjacencies<'a>;

impl<'a: 'g, 'g, G> Iterator for IncidenceIter<'a, 'g, G>
where
    G: Adjacencies<'a>,
{
    type Item = (G::Edge, G::Node);
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.1.take().map(|it| {
            let ev = self.0.get(&it);
            self.1 = self.0.next(it);
            ev
        })
    }
}

pub trait Adjacencies<'a>: GraphType<'a> {
    type Incidence: 'a + Clone;

    fn first(&self, u: Self::Node) -> Option<Self::Incidence>;

    fn next(&self, it: Self::Incidence) -> Option<Self::Incidence>;

    fn get(&self, it: &Self::Incidence) -> (Self::Edge, Self::Node);

    fn neighs<'g>(&'g self, u: Self::Node) -> IncidenceIter<'a, 'g, Self>
    where
        Self: Sized,
    {
        IncidenceIter(self, self.first(u))
    }

    fn filter<P>(self, predicate: P) -> FilterAdjacencies<Self, P>
    where
        Self: Sized,
        P: for<'r> Fn(&'r (Self::Edge, Self::Node)) -> bool,
    {
        FilterAdjacencies(self, predicate)
    }
}

pub struct FilterAdjacencies<A, P>(A, P);

#[derive(Clone)]
pub struct Filtered<I>(I);

impl<'a, A, P> GraphType<'a> for FilterAdjacencies<A, P>
where
    A: Adjacencies<'a>,
{
    type Node = A::Node;
    type Edge = A::Edge;
}

impl<'a, A, P> Adjacencies<'a> for FilterAdjacencies<A, P>
where
    A: Adjacencies<'a>,
    P: 'a + Clone + for<'r> Fn(&'r (A::Edge, A::Node)) -> bool,
{
    type Incidence = Filtered<A::Incidence>;

    fn first(&self, u: Self::Node) -> Option<Self::Incidence> {
        let mut cur = self.0.first(u);
        while let Some(it) = cur {
            if (self.1)(&self.0.get(&it)) {
                return Some(Filtered(it));
            }
            cur = self.0.next(it);
        }
        None
    }

    fn next(&self, it: Self::Incidence) -> Option<Self::Incidence> {
        let mut cur = self.0.next(it.0);
        while let Some(it) = cur {
            if (self.1)(&self.0.get(&it)) {
                return Some(Filtered(it));
            }
            cur = self.0.next(it);
        }
        None
    }

    fn get(&self, it: &Self::Incidence) -> (Self::Edge, Self::Node) {
        self.0.get(&it.0)
    }
}

/// Neighbor access over all adjacent (undirected) edges.
pub struct Neighbors<'g, G>(pub &'g G);

impl<'a, 'g: 'a, G> GraphType<'a> for Neighbors<'g, G>
where
    G: GraphType<'g>,
{
    type Node = G::Node;
    type Edge = G::Edge;
}

impl<'a, 'g: 'a, G> Adjacencies<'a> for Neighbors<'g, G>
where
    G: Undirected<'g>,
{
    type Incidence = G::Neigh;

    fn first(&self, u: Self::Node) -> Option<Self::Incidence> {
        self.0.first_neigh(u)
    }

    fn next(&self, it: Self::Incidence) -> Option<Self::Incidence> {
        self.0.next_neigh(it)
    }

    fn get(&self, it: &Self::Incidence) -> (Self::Edge, Self::Node) {
        self.0.get_neigh(it)
    }
}

/// Neighbor access over all outgoing edges of a `Digraph`.
pub struct OutEdges<'g, G>(pub &'g G);

impl<'a, 'g: 'a, G> GraphType<'a> for OutEdges<'g, G>
where
    G: Directed<'g>,
{
    type Node = G::Node;
    type Edge = G::Edge;
}

impl<'a, 'g: 'a, G> Adjacencies<'a> for OutEdges<'g, G>
where
    G: Directed<'g>,
{
    type Incidence = G::OutEdge;

    fn first(&self, u: Self::Node) -> Option<Self::Incidence> {
        self.0.first_out(u)
    }

    fn next(&self, it: Self::Incidence) -> Option<Self::Incidence> {
        self.0.next_out(it)
    }

    fn get(&self, it: &Self::Incidence) -> (Self::Edge, Self::Node) {
        self.0.get_out(it)
    }
}

/// Neighbor access over all outgoing edges of a `Digraph`.
pub struct InEdges<'g, G>(pub &'g G);

impl<'a, 'g: 'a, G> GraphType<'a> for InEdges<'g, G>
where
    G: Directed<'g>,
{
    type Node = G::Node;
    type Edge = G::Edge;
}

impl<'a, 'g: 'a, G> Adjacencies<'a> for InEdges<'g, G>
where
    G: Directed<'g>,
{
    type Incidence = G::InEdge;

    fn first(&self, u: Self::Node) -> Option<Self::Incidence> {
        self.0.first_in(u)
    }

    fn next(&self, it: Self::Incidence) -> Option<Self::Incidence> {
        self.0.next_in(it)
    }

    fn get(&self, it: &Self::Incidence) -> (Self::Edge, Self::Node) {
        self.0.get_in(it)
    }
}

/// Implement Adjacencies for references.
impl<'a, A> Adjacencies<'a> for &'a A
where
    A: Adjacencies<'a>,
{
    type Incidence = A::Incidence;

    fn first(&self, u: Self::Node) -> Option<Self::Incidence> {
        (*self).first(u)
    }

    fn next(&self, it: Self::Incidence) -> Option<Self::Incidence> {
        (*self).next(it)
    }

    fn get(&self, it: &Self::Incidence) -> (Self::Edge, Self::Node) {
        (*self).get(it)
    }
}