1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
 * Copyright (c) 2017, 2018, 2020 Frank Fischer <frank-fischer@shadow-soft.de>
 *
 * This program is free software: you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see  <http://www.gnu.org/licenses/>
 */

//! Depth-first-search.
//!
//! # Example
//!
//! ```
//! use rs_graph::LinkedListGraph;
//! use rs_graph::traits::*;
//! use rs_graph::classes;
//! use rs_graph::search::dfs;
//!
//! let g: LinkedListGraph = classes::peterson();
//! let mut cnt = 0;
//! for (u, e) in dfs::start(g.neighbors(), g.id2node(0)) {
//!     assert_ne!(g.node_id(u), 0);
//!     cnt += 1;
//! }
//! assert_eq!(cnt, g.num_nodes() - 1);
//! ```

use crate::adjacencies::Adjacencies;
use crate::collections::{ItemMap, ItemStack};
use crate::traits::GraphType;
use std::collections::HashMap;
use std::hash::Hash;
use std::marker::PhantomData;

/// DFS iterator with default data structures.
pub type DFSDefault<'a, A> =
    DFS<'a, A, HashMap<<A as GraphType<'a>>::Node, <A as GraphType<'a>>::Edge>, Vec<<A as Adjacencies<'a>>::Incidence>>;

/// Start and return a DFS iterator using default data structures.
///
/// This is a convenience wrapper around [`start_with_data`] using the default
/// data structures returned by [`default_data`].
///
/// # Parameter
/// - `adj`: adjacency information for the graph
/// - `src`: the source node at which the search should start.
pub fn start<'a, A>(adj: A, src: A::Node) -> DFSDefault<'a, A>
where
    A: Adjacencies<'a>,
    A::Node: Hash,
{
    start_with_data(adj, src, default_data())
}

/// Start and return a DFS iterator with user defined data structures.
///
/// The returned iterator traverses the edges in depth-first order. The
/// iterator returns the next node and its incoming edge.
///
/// Note that the start node is *not* returned by the iterator.
///
/// The algorithm requires a pair `(M, S)` with `M` implementing [`ItemMap<Node,
/// Edge>`][crate::collections::ItemMap], and `S` implementing
/// [`ItemStack<_>`][crate::collections::ItemStack] as internal data
/// structures. The map is used to store the last edge of the path from the
/// source to each reachable node. The stack is used to handle the nodes in
/// depth-first order. The data structures can be reused for multiple
/// searches.
///
/// # Parameter
/// - `adj`: adjacency information for the graph
/// - `src`: the source node at which the search should start.
/// - `data`: the data structures used in the algorithm
///
/// # Example
///
/// ```
/// use rs_graph::LinkedListGraph;
/// use rs_graph::traits::*;
/// use rs_graph::classes;
/// use rs_graph::search::dfs;
/// use std::collections::HashMap;
///
/// let g: LinkedListGraph = classes::peterson();
/// let mut cnt = 0;
/// for (u, e) in dfs::start_with_data(g.neighbors(), g.id2node(0),
///                                    (HashMap::new(), Vec::new()))
/// {
///     assert_ne!(g.node_id(u), 0);
///     cnt += 1;
/// }
/// assert_eq!(cnt, g.num_nodes() - 1);
/// ```
pub fn start_with_data<'a, A, S, St>(adj: A, src: A::Node, data: (S, St)) -> DFS<'a, A, S, St>
where
    A: Adjacencies<'a>,
    S: ItemMap<A::Node, A::Edge>,
    St: ItemStack<A::Incidence>,
{
    let (mut seen, mut stack) = data;
    seen.clear();
    stack.clear();

    if let Some(it) = adj.first(src) {
        stack.push(it);
    }

    DFS {
        adj,
        src,
        seen,
        stack,
        phantom: PhantomData,
    }
}

/// Return the default data structure to be used in the DFS.
///
/// This is a [`HashMap`] and a [`Vec`].
pub fn default_data<N, E, I>() -> (HashMap<N, E>, Vec<I>)
where
    N: Copy + Eq + Hash,
{
    (HashMap::new(), Vec::new())
}

pub struct DFS<'a, A, S, St>
where
    A: Adjacencies<'a>,
    S: ItemMap<A::Node, A::Edge>,
    St: ItemStack<A::Incidence>,
{
    adj: A,
    src: A::Node,
    seen: S,
    stack: St,
    phantom: PhantomData<&'a ()>,
}

impl<'a, A, S, St> Iterator for DFS<'a, A, S, St>
where
    A: Adjacencies<'a>,
    S: ItemMap<A::Node, A::Edge>,
    St: ItemStack<A::Incidence>,
{
    type Item = (A::Node, A::Edge);

    fn next(&mut self) -> Option<Self::Item> {
        while let Some(it) = self.stack.pop() {
            let (e, v) = self.adj.get(&it);
            if let Some(nxt) = self.adj.next(it) {
                self.stack.push(nxt);
            }
            if v != self.src && self.seen.insert(v, e) {
                if let Some(it) = self.adj.first(v) {
                    self.stack.push(it);
                }
                return Some((v, e));
            }
        }
        None
    }
}

impl<'a, A, S, St> DFS<'a, A, S, St>
where
    A: Adjacencies<'a>,
    S: ItemMap<A::Node, A::Edge>,
    St: ItemStack<A::Incidence>,
{
    /// Run the dfs completely.
    ///
    /// Note that this method may run forever on an infinite graph.
    pub fn run(&mut self) {
        while self.next().is_some() {}
    }

    /// Return the data structures used in the search.
    pub fn into_data(self) -> (S, St) {
        (self.seen, self.stack)
    }

    /// Return the incoming edge of a node.
    pub fn incoming_edge(&self, u: A::Node) -> Option<A::Edge> {
        self.seen.get(u).cloned()
    }
}