1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/*
 * Copyright (c) 2018 Frank Fischer <frank-fischer@shadow-soft.de>
 *
 * This program is free software: you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see  <http://www.gnu.org/licenses/>
 */

//! A* search.
//!
//! This module implements an A*-search for finding a shortest paths
//! from some node to all other nodes. Each node may be assigned a
//! potential (or "heuristic value") estimating the distance to the target
//! node. The potential $h\colon V \to \mathbb{R}$ must satisfy
//! \\[ w(u,v) - h(u) + h(v) \ge 0, (u,v) \in E \\]
//! where $w\colon E \to \mathbb{R}$ are the weights (or lengths) of the edges.
//! (The relation must hold for both directions in case the graph is
//! undirected).
//!
//! If $s \in V$ is the start node and $t$ some destination node, then
//! $h(u) - h(t)$ is a lower bound on the distance from $u$ to $t$ for all nodes $u \in V$.
//! Hence, f the shortest path to some specific destination node $t$ should be
//! found the canonical choice for $h$ is such that $h(t) = 0$ and $h(u)$ is a
//! lower bound on the distance from $u$ to $t$.
//!
//! # Example
//!
//! ```
//! use rs_graph::traits::*;
//! use rs_graph::search::astar;
//! use rs_graph::string::{from_ascii, Data};
//! use rs_graph::LinkedListGraph;
//!
//! let Data {
//!     graph: g,
//!     weights,
//!     nodes,
//! } = from_ascii::<LinkedListGraph>(
//!     r"
//!     *--1--*--1--*--1--*--1--*--1--*--1--*--1--*
//!     |     |     |     |     |     |     |     |
//!     1     1     1     1     1     1     1     1
//!     |     |     |     |     |     |     |     |
//!     *--1--*--2--*--1--*--2--e--1--f--1--t--1--*
//!     |     |     |     |     |     |     |     |
//!     1     1     1     1     1     2     1     1
//!     |     |     |     |     |     |     |     |
//!     *--1--*--1--*--2--c--1--d--1--*--2--*--1--*
//!     |     |     |     |     |     |     |     |
//!     1     1     1     1     1     1     1     1
//!     |     |     |     |     |     |     |     |
//!     *--1--s--1--a--1--b--2--*--1--*--1--*--1--*
//!     |     |     |     |     |     |     |     |
//!     1     1     1     1     1     1     1     1
//!     |     |     |     |     |     |     |     |
//!     *--1--*--1--*--1--*--1--*--1--*--1--*--1--*
//!     ",
//! )
//! .unwrap();
//!
//! let s = nodes[&'s'];
//! let t = nodes[&'t'];
//!
//! // nodes are numbered row-wise -> get node coordinates
//! let coords = |u| ((g.node_id(u) % 8) as isize, (g.node_id(u) / 8) as isize);
//!
//! let (xs, ys) = coords(s);
//! let (xt, yt) = coords(t);
//!
//! // manhatten distance heuristic
//! let manh_heur = |u| {
//!     let (x, y) = coords(u);
//!     ((x - xt).abs() + (y - yt).abs()) as usize
//! };
//!
//! // verify that we do not go in the "wrong" direction
//! for (v, _, _) in astar::start(g.neighbors(), s, |e| weights[e.index()], manh_heur) {
//!     let (x, y) = coords(v);
//!     assert!(x >= xs && x <= xt && y >= yt && y <= ys);
//!     if v == t {
//!         break;
//!     }
//! }
//!
//! // obtain the shortest path directly
//! let (path, dist) = astar::find_undirected_path(&g, s, t, |e| weights[e.index()], manh_heur).unwrap();
//!
//! assert_eq!(dist, 7);
//!
//! let mut pathnodes = vec![s];
//! for e in path {
//!     let uv = g.enodes(e);
//!     if uv.0 == *pathnodes.last().unwrap() {
//!         pathnodes.push(uv.1);
//!     } else {
//!         pathnodes.push(uv.0);
//!     }
//! }
//! assert_eq!(pathnodes, "sabcdeft".chars().map(|c| nodes[&c]).collect::<Vec<_>>());
//! ```

use crate::adjacencies::{Adjacencies, Neighbors, OutEdges};
use crate::collections::BinHeap;
use crate::collections::{ItemMap, ItemPriQueue};
use crate::search::path_from_incomings;
use crate::traits::{Digraph, Graph, GraphType};

use num_traits::Zero;

use std::cmp::Ordering;
use std::collections::HashMap;
use std::hash::Hash;
use std::marker::PhantomData;
use std::ops::{Add, Sub};

/// A* search iterator.
pub struct AStar<'a, A, D, W, M, P, H, Accum>
where
    A: Adjacencies<'a>,
    M: ItemMap<A::Node, Option<P::Item>>,
    P: ItemPriQueue<A::Node, Data<A::Edge, D, H::Result>>,
    D: Copy,
    W: Fn(A::Edge) -> D,
    H: AStarHeuristic<A::Node>,
    H::Result: Copy,
    Accum: Accumulator<D>,
{
    adj: A,
    nodes: M,
    pqueue: P,
    weights: W,
    heur: H,
    phantom: PhantomData<&'a (D, Accum)>,
}

/// The data stored with an edge during the search.
#[derive(Clone)]
pub struct Data<E, D, H> {
    /// incoming edge on currently best path
    pub incoming_edge: E,
    /// currently best known distance
    pub distance: D,
    /// the lower bound of this node
    lower: H,
}

impl<E, D, H> PartialEq for Data<E, D, H>
where
    D: PartialEq,
{
    fn eq(&self, data: &Self) -> bool {
        self.distance.eq(&data.distance)
    }
}

impl<E, D, H> PartialOrd for Data<E, D, H>
where
    D: PartialOrd + Clone,
    H: Add<D, Output = D> + Clone,
{
    fn partial_cmp(&self, data: &Self) -> Option<Ordering> {
        (self.lower.clone() + self.distance.clone()).partial_cmp(&(data.lower.clone() + data.distance.clone()))
    }
}

/// A heuristic providing a node potential.
///
/// The node potential must satisfy that $w(u,v) - h(u) + h(v) \ge 0$ for all
/// edges $(u,v) \in E$. This means that $h(u) - h(t)$ must be a lower bound for
/// the distance from $u$ to the destination node $t$. Usually one chooses $h(t)
/// = 0$ for the destination node $t$.
pub trait AStarHeuristic<N> {
    type Result: Copy + Default;

    fn call(&self, u: N) -> Self::Result;
}

impl<F, N, H> AStarHeuristic<N> for F
where
    F: Fn(N) -> H,
    H: Copy + Default,
{
    type Result = H;

    fn call(&self, u: N) -> H {
        (*self)(u)
    }
}

/// A binary operation used to accumulate edge weight and distance.
///
/// The default operation for Dijkstra's algorithm is the sum, for Prim's
/// algorithm it is simply the edge weight ignoring the "distance".
pub trait Accumulator<T> {
    fn accum(dist: T, weight: T) -> T;
}

/// Accumulates by adding distance and weight.
pub struct SumAccumulator;

impl<T> Accumulator<T> for SumAccumulator
where
    T: Add<Output = T>,
{
    fn accum(dist: T, weight: T) -> T {
        dist + weight
    }
}

/// Default map type to be used in an A* search.
///
/// - `A` is the graph type information
/// - `D` is the type of distance values
/// - `H` is the type of heuristic values
pub type DefaultMap<'a, A, D, H> = HashMap<
    <A as GraphType<'a>>::Node,
    Option<
        <BinHeap<<A as GraphType<'a>>::Node, Data<<A as GraphType<'a>>::Edge, D, H>> as ItemPriQueue<
            <A as GraphType<'a>>::Node,
            Data<<A as GraphType<'a>>::Edge, D, H>,
        >>::Item,
    >,
>;

/// Default priority queue type to be used in an A* search.
///
/// - `A` is the graph type information
/// - `D` is the type of distance values
/// - `H` is the type of heuristic values
pub type DefaultPriQueue<'a, A, D, H> = BinHeap<<A as GraphType<'a>>::Node, Data<<A as GraphType<'a>>::Edge, D, H>>;

/// The A*-iterator with default types.
pub type AStarDefault<'a, A, D, W, H> = AStar<
    'a,
    A,
    D,
    W,
    DefaultMap<'a, A, D, <H as AStarHeuristic<<A as GraphType<'a>>::Node>>::Result>,
    DefaultPriQueue<'a, A, D, <H as AStarHeuristic<<A as GraphType<'a>>::Node>>::Result>,
    H,
    SumAccumulator,
>;

/// Start and return an A*-iterator using default data structures.
///
/// This is a convenience wrapper around [`start_with_data`] using the default
/// data structures returned by [`default_data`].
///
/// # Parameter
/// - `adj`: adjacency information for the graph
/// - `src`: the source node at which the search should start.
/// - `weights`: the weight function for each edge
/// - `heur`: the heuristic used in the search
pub fn start<'a, A, D, W, H>(adj: A, src: A::Node, weights: W, heur: H) -> AStarDefault<'a, A, D, W, H>
where
    A: Adjacencies<'a>,
    A::Node: Hash,
    D: Copy + PartialOrd + Zero,
    W: Fn(A::Edge) -> D,
    H: AStarHeuristic<A::Node>,
    H::Result: Add<D, Output = D>,
{
    start_with_data(adj, src, weights, heur, default_data())
}

/// Return the default data structure to be used in the A*-search.
///
/// This is a [`HashMap`] and a
/// [`BinHeap`][crate::collections::priqueue::BinHeap].
pub fn default_data<ID, N, I, D>() -> (HashMap<N, I>, BinHeap<N, D, ID>)
where
    N: Hash + Eq,
{
    (HashMap::new(), BinHeap::default())
}

/// Start and return an A*-iterator with custom data structures.
///
/// The returned iterator traverses the edges in the order of an A*-search. The
/// iterator returns the next node, its incoming edge and the distance to the
/// start node.
///
/// The heuristic is a assigning a potential to each node. The potential of all
/// nodes must be so that $w(u,v) - h(u) + h(v) \ge 0$ for all edges $(u,v) \in
/// E$. If $t$ is the destination node of the path then $h(u) - h(t)$ is a lower
/// bound on the distance from $u$ to $t$ for each node $u \in V$ (in this case
/// one usually chooses $h(t) = 0$). The value returned by the heuristic must be
/// compatible with the distance type, i.e., is must be possible to compute the
/// sum of both.
///
/// Note that the start node is *not* returned by the iterator.
///
/// The algorithm requires a pair `(M, P)` with `M` implementing [`ItemMap<Node,
/// Item>`][crate::collections::ItemMap], and `P` implementing
/// [`ItemPriQueue<Node, D>`][crate::collections::ItemStack] as internal data
/// structures. The map is used to store information about the last edge on a
/// shortest path for each reachable node. The priority queue is used the handle
/// the nodes in the correct order. The data structures can be reused for
/// multiple searches.
///
/// This function uses the default data structures returned by [`default_data`].
///
/// # Parameter
/// - `adj`: adjacency information for the graph
/// - `src`: the source node at which the search should start.
/// - `weights`: the weight function for each edge
/// - `heur`: the heuristic used in the search
/// - `data`: the custom data structures
pub fn start_with_data<'a, A, D, W, H, M, P>(
    adj: A,
    src: A::Node,
    weights: W,
    heur: H,
    data: (M, P),
) -> AStar<'a, A, D, W, M, P, H, SumAccumulator>
where
    A: Adjacencies<'a>,
    D: Copy + PartialOrd + Zero,
    W: Fn(A::Edge) -> D,
    H: AStarHeuristic<A::Node>,
    H::Result: Add<D, Output = D>,
    M: ItemMap<A::Node, Option<P::Item>>,
    P: ItemPriQueue<A::Node, Data<A::Edge, D, H::Result>>,
{
    start_generic(adj, src, weights, heur, data)
}

/// Start and return an A*-iterator with a custom accumulator and custom data structures.
///
/// This function differs from [`start_with_data`] in the additional type
/// parameter `Accum`. The type parameter is the accumulation function for
/// combining the length to the previous node with the weight of the current
/// edge. It is usually just the sum ([`SumAccumulator`]). One possible use is
/// the Prim's algorithm for the minimum spanning tree problem (see
/// [`mst::prim`](crate::mst::prim())).
pub fn start_generic<'a, A, D, W, H, Accum, M, P>(
    adj: A,
    src: A::Node,
    weights: W,
    heur: H,
    data: (M, P),
) -> AStar<'a, A, D, W, M, P, H, Accum>
where
    A: Adjacencies<'a>,
    D: Copy + PartialOrd + PartialOrd + Zero,
    W: Fn(A::Edge) -> D,
    H: AStarHeuristic<A::Node>,
    H::Result: Add<D, Output = D>,
    M: ItemMap<A::Node, Option<P::Item>>,
    P: ItemPriQueue<A::Node, Data<A::Edge, D, H::Result>>,
    Accum: Accumulator<D>,
{
    let (mut nodes, mut pqueue) = data;
    pqueue.clear();
    nodes.clear();
    nodes.insert(src, None);

    // insert neighbors of source
    for (e, v) in adj.neighs(src) {
        let dist = Accum::accum(D::zero(), (weights)(e));
        match nodes.get_mut(v) {
            Some(Some(vitem)) => {
                // node is known but unhandled
                let (olddist, lower) = {
                    let data = pqueue.value(vitem);
                    (data.distance, data.lower)
                };
                if dist < olddist {
                    pqueue.decrease_key(
                        vitem,
                        Data {
                            incoming_edge: e,
                            distance: dist,
                            lower,
                        },
                    );
                }
            }
            None => {
                // node is unknown
                let item = pqueue.push(
                    v,
                    Data {
                        incoming_edge: e,
                        distance: dist,
                        lower: heur.call(v),
                    },
                );
                nodes.insert(v, Some(item));
            }
            _ => (), // node has been handled
        };
    }

    AStar {
        adj,
        nodes,
        pqueue,
        weights,
        heur,
        phantom: PhantomData,
    }
}

impl<'a, A, D, W, M, P, H, Accum> Iterator for AStar<'a, A, D, W, M, P, H, Accum>
where
    A: Adjacencies<'a>,
    D: Copy + PartialOrd + Add<D, Output = D> + Sub<D, Output = D>,
    W: Fn(A::Edge) -> D,
    M: ItemMap<A::Node, Option<P::Item>>,
    P: ItemPriQueue<A::Node, Data<A::Edge, D, H::Result>>,
    H: AStarHeuristic<A::Node>,
    H::Result: Add<D, Output = D>,
    Accum: Accumulator<D>,
{
    type Item = (A::Node, A::Edge, D);

    fn next(&mut self) -> Option<Self::Item> {
        if let Some((u, data)) = self.pqueue.pop_min() {
            // node is not in the queue anymore, forget its item
            self.nodes.insert_or_replace(u, None);
            let (d, incoming_edge) = (data.distance, data.incoming_edge);
            for (e, v) in self.adj.neighs(u) {
                let dist = Accum::accum(d, (self.weights)(e));
                match self.nodes.get_mut(v) {
                    Some(Some(vitem)) => {
                        // node is known but unhandled
                        let (olddist, lower) = {
                            let data = self.pqueue.value(vitem);
                            (data.distance, data.lower)
                        };
                        if dist < olddist {
                            self.pqueue.decrease_key(
                                vitem,
                                Data {
                                    incoming_edge: e,
                                    distance: dist,
                                    lower,
                                },
                            );
                        }
                    }
                    None => {
                        // node is unknown
                        let item = self.pqueue.push(
                            v,
                            Data {
                                incoming_edge: e,
                                distance: dist,
                                lower: self.heur.call(v),
                            },
                        );
                        self.nodes.insert(v, Some(item));
                    }
                    _ => (), // node has been handled
                };
            }
            Some((u, incoming_edge, d))
        } else {
            None
        }
    }
}

impl<'a, A, D, W, M, P, H, Accum> AStar<'a, A, D, W, M, P, H, Accum>
where
    A: Adjacencies<'a>,
    D: Copy + PartialOrd + Add<D, Output = D> + Sub<D, Output = D>,
    W: Fn(A::Edge) -> D,
    M: ItemMap<A::Node, Option<P::Item>>,
    P: ItemPriQueue<A::Node, Data<A::Edge, D, H::Result>>,
    H: AStarHeuristic<A::Node>,
    H::Result: Add<D, Output = D>,
    Accum: Accumulator<D>,
{
    /// Run the search completely.
    ///
    /// Note that this method may run forever on an infinite graph.
    pub fn run(&mut self) {
        while self.next().is_some() {}
    }

    /// Return the data structures used during the algorithm
    pub fn into_data(self) -> (M, P) {
        (self.nodes, self.pqueue)
    }
}

/// Start an A*-search on a undirected graph.
///
/// Each edge can be traversed in both directions with the same weight.
///
/// This is a convenience wrapper to start the search on an undirected graph
/// with the default data structures.
///
/// # Parameter
/// - `g`: the graph
/// - `weights`: the (non-negative) edge weights
/// - `src`: the source node
/// - `heur`: the lower bound heuristic
pub fn start_undirected<'a, G, D, W, H>(
    g: &'a G,
    src: G::Node,
    weights: W,
    heur: H,
) -> AStarDefault<'a, Neighbors<'a, G>, D, W, H>
where
    G: Graph<'a>,
    G::Node: Hash,
    D: Copy + PartialOrd + Zero,
    W: Fn(G::Edge) -> D,
    H: AStarHeuristic<G::Node>,
    H::Result: Add<D, Output = D>,
{
    start(Neighbors(g), src, weights, heur)
}

/// Run an A*-search on an undirected graph and return the path.
///
/// Each edge can be traversed in both directions with the same weight.
///
/// This is a convenience wrapper to run the search on an undirected graph with
/// the default data structures and return the resulting path from `src` to
/// `snk`.
///
/// # Parameter
/// - `g`: the graph
/// - `weights`: the (non-negative) edge weights
/// - `src`: the source node
/// - `snk`: the sink node
/// - `heur`: the lower bound heuristic
///
/// The function returns the edges on the path and its length.
pub fn find_undirected_path<'a, G, D, W, H>(
    g: &'a G,
    src: G::Node,
    snk: G::Node,
    weights: W,
    heur: H,
) -> Option<(Vec<G::Edge>, D)>
where
    G: Graph<'a>,
    G::Node: Hash,
    D: 'a + Copy + PartialOrd + Zero + Add<D, Output = D> + Sub<D, Output = D>,
    W: Fn(G::Edge) -> D,
    H: AStarHeuristic<G::Node>,
    H::Result: Add<D, Output = D>,
{
    if src == snk {
        return Some((vec![], D::zero()));
    }
    // run search until sink node has been found
    let mut incoming_edges = HashMap::new();
    for (u, e, d) in start_undirected(g, src, weights, heur) {
        incoming_edges.insert(u, e);
        if u == snk {
            let mut path = path_from_incomings(snk, |u| {
                incoming_edges
                    .get(&u)
                    .map(|&e| (e, g.enodes(e)))
                    .map(|(e, (v, w))| (e, if v == u { w } else { v }))
            })
            .collect::<Vec<_>>();
            path.reverse();
            return Some((path, d));
        }
    }
    None
}

/// Start an A*-search on a directed graph.
///
/// This is a convenience wrapper to start the search on an directed graph
/// with the default data structures.
///
/// # Parameter
/// - `g`: the graph
/// - `weights`: the (non-negative) edge weights
/// - `src`: the source node
/// - `heur`: the lower bound heuristic
pub fn start_directed<'a, G, D, W, H>(
    g: &'a G,
    src: G::Node,
    weights: W,
    heur: H,
) -> AStarDefault<'a, OutEdges<'a, G>, D, W, H>
where
    G: Digraph<'a>,
    G::Node: Hash,
    D: Copy + PartialOrd + Zero,
    W: Fn(G::Edge) -> D,
    H: AStarHeuristic<G::Node>,
    H::Result: Add<D, Output = D>,
{
    start(OutEdges(g), src, weights, heur)
}

/// Run an A*-search on a directed graph and return the path.
///
/// This is a convenience wrapper to run the search on an directed graph with
/// the default data structures and return the resulting path from `src` to
/// `snk`.
///
/// # Parameter
/// - `g`: the graph
/// - `weights`: the (non-negative) edge weights
/// - `src`: the source node
/// - `snk`: the sink node
/// - `heur`: the lower bound heuristic
///
/// The function returns the edges on the path and its length.
pub fn find_directed_path<'a, G, D, W, H>(
    g: &'a G,
    src: G::Node,
    snk: G::Node,
    weights: W,
    heur: H,
) -> Option<(Vec<G::Edge>, D)>
where
    G: Digraph<'a>,
    G::Node: Hash,
    D: 'a + Copy + PartialOrd + Zero + Add<D, Output = D> + Sub<D, Output = D>,
    W: Fn(G::Edge) -> D,
    H: AStarHeuristic<G::Node>,
    H::Result: Add<D, Output = D>,
{
    if src == snk {
        return Some((vec![], D::zero()));
    }
    // run search until sink node has been found
    let mut incoming_edges = HashMap::new();
    for (u, e, d) in start_directed(g, src, weights, heur) {
        incoming_edges.insert(u, e);
        if u == snk {
            let mut path =
                path_from_incomings(snk, |u| incoming_edges.get(&u).map(|&e| (e, g.src(e)))).collect::<Vec<_>>();
            path.reverse();
            return Some((path, d));
        }
    }
    None
}