1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
//! Session state.
//!
//! This module defines the types to remember that state of a session with a
//! particular RTR server. The complete state, encapsulated in the type
//! [`State`] consists of a sixteen bit session id and a serial number. Since
//! the serial number follows special rules, it has its own type [`Serial`].
//!
//! [`Serial`]: struct.Serial.html
//! [`State`]: struct.State.html

use std::{cmp, fmt, hash, str};
use std::time::SystemTime;


//------------ State ---------------------------------------------------------

/// The RTR session state.
///
/// This state consists of a session ID describing a continuous session with
/// the same evolving data set a server is running and a serial number that
/// describes a particular version of this set.
///
/// Both a session ID and an initial serial number are chosen when a new
/// session is started. Whenever data is being updated, the serial number is
/// increased by one.
///
/// This type contains both these values. You can create the state values for
/// a new session with [`new`] and increase the serial number with [`inc`].
///
/// [`new`]: #method.new
/// [`inc`]: #method.inc
#[derive(Clone, Copy, Debug)]
pub struct State {
    session: u16,
    serial: Serial
}

impl State {
    /// Creates a state value for a new session.
    ///
    /// This will pick a session ID based on the lower 16 bit of the current
    /// Unix time and an initial serial of 0. If you want to choose a
    /// different starting serial, you can use [`new_with_serial`] instead.
    ///
    /// [`new_with_serial`]: #method.new_with_serial
    pub fn new() -> Self {
        Self::new_with_serial(0.into())
    }

    /// Creates a state value with a given initial serial number.
    ///
    /// The function will use a session ID based on the lower 16 bit of the
    /// current time and an initial serial of `serial`.
    pub fn new_with_serial(serial: Serial) -> Self {
        State {
            session: {
                SystemTime::now()
                .duration_since(SystemTime::UNIX_EPOCH).unwrap()
                .as_secs() as u16
            },
            serial
        }
    }

    /// Creates a new state value from its components.
    pub fn from_parts(session: u16, serial: Serial) -> Self {
        State { session, serial }
    }

    /// Increases the serial number by one.
    ///
    /// Serial number may wrap but that’s totally fine. See [`Serial`] for
    /// more details.
    ///
    /// [`Serial`]: struct.Serial.html
    pub fn inc(&mut self) {
        self.serial = self.serial.add(1)
    }

    /// Returns the session ID.
    pub fn session(self) -> u16 {
        self.session
    }

    /// Returns the serial number.
    pub fn serial(self) -> Serial {
        self.serial
    }
}

impl Default for State {
    fn default() -> Self {
        Self::new()
    }
}


//------------ Serial --------------------------------------------------------

/// A serial number.
///
/// Serial numbers are regular integers with a special notion for comparison
/// in order to be able to deal with roll-over.
///
/// Specifically, addition and comparison are defined in [RFC 1982].
/// Addition, however, is only defined for values up to `2^31 - 1`, so we
/// decided to not implement the `Add` trait but rather have a dedicated
/// method `add` so as to not cause surprise panics.
/// 
/// Serial numbers only implement a partial ordering. That is, there are
/// pairs of values that are not equal but there still isn’t one value larger
/// than the other. Since this is neatly implemented by the `PartialOrd`
/// trait, the type implements that.
///
/// [RFC 1982]: https://tools.ietf.org/html/rfc1982
#[derive(Clone, Copy, Debug)]
pub struct Serial(pub u32);

impl Serial {
    pub fn from_be(value: u32) -> Self {
        Serial(u32::from_be(value))
    }

    pub fn to_be(self) -> u32 {
        self.0.to_be()
    }

    /// Add `other` to `self`.
    ///
    /// Serial numbers only allow values of up to `2^31 - 1` to be added to
    /// them. Therefore, this method requires `other` to be a `u32` instead
    /// of a `Serial` to indicate that you cannot simply add two serials
    /// together. This is also why we don’t implement the `Add` trait.
    ///
    /// # Panics
    ///
    /// This method panics if `other` is greater than `2^31 - 1`.
    #[allow(clippy::should_implement_trait)]
    pub fn add(self, other: u32) -> Self {
        assert!(other <= 0x7FFF_FFFF);
        Serial(self.0.wrapping_add(other))
    }
}


//--- Default

impl Default for Serial {
    fn default() -> Self {
        Self::from(0)
    }
}


//--- From and FromStr

impl From<u32> for Serial {
    fn from(value: u32) -> Serial {
        Serial(value)
    }
}

impl From<Serial> for u32 {
    fn from(serial: Serial) -> u32 {
        serial.0
    }
}

impl str::FromStr for Serial {
    type Err = <u32 as str::FromStr>::Err;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        <u32 as str::FromStr>::from_str(s).map(Into::into)
    }
}


//--- Display

impl fmt::Display for Serial {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.0)
    }
}


//--- PartialEq and Eq

impl PartialEq for Serial {
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}

impl PartialEq<u32> for Serial {
    fn eq(&self, other: &u32) -> bool {
        self.0.eq(other)
    }
}

impl Eq for Serial { }


//--- PartialOrd

impl cmp::PartialOrd for Serial {
    fn partial_cmp(&self, other: &Serial) -> Option<cmp::Ordering> {
        match self.0.cmp(&other.0) {
            cmp::Ordering::Equal => Some(cmp::Ordering::Equal),
            cmp::Ordering::Less => {
                let sub = other.0 - self.0;
                match sub.cmp(&0x8000_0000) {
                    cmp::Ordering::Less => Some(cmp::Ordering::Less),
                    cmp::Ordering::Greater => Some(cmp::Ordering::Greater),
                    _ => None
                }
            },
            cmp::Ordering::Greater => {
                let sub = self.0 - other.0;
                match sub.cmp(&0x8000_0000) {
                    cmp::Ordering::Less => Some(cmp::Ordering::Greater),
                    cmp::Ordering::Greater => Some(cmp::Ordering::Less),
                    _ => None
                }
            }
        }
    }
}


//--- Hash

impl hash::Hash for Serial {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        self.0.hash(state)
    }
}


//============ Testing =======================================================

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn good_addition() {
        assert_eq!(Serial(0).add(4), Serial(4));
        assert_eq!(Serial(0xFF00_0000).add(0x0F00_0000),
                   Serial(((0xFF00_0000u64 + 0x0F00_0000u64)
                           % 0x1_0000_0000) as u32));
    }

    #[test]
    #[should_panic]
    fn bad_addition() {
        let _ = Serial(0).add(0x8000_0000);
    }

    #[test]
    fn comparison() {
        use std::cmp::Ordering::*;

        assert_eq!(Serial(12), Serial(12));
        assert_ne!(Serial(12), Serial(112));

        assert_eq!(Serial(12).partial_cmp(&Serial(12)), Some(Equal));

        // s1 is said to be less than s2 if [...]
        // (i1 < i2 and i2 - i1 < 2^(SERIAL_BITS - 1))
        assert_eq!(Serial(12).partial_cmp(&Serial(13)), Some(Less));
        assert_ne!(Serial(12).partial_cmp(&Serial(3_000_000_012)), Some(Less));

        // or (i1 > i2 and i1 - i2 > 2^(SERIAL_BITS - 1))
        assert_eq!(Serial(3_000_000_012).partial_cmp(&Serial(12)), Some(Less));
        assert_ne!(Serial(13).partial_cmp(&Serial(12)), Some(Less));

        // s1 is said to be greater than s2 if [...]
        // (i1 < i2 and i2 - i1 > 2^(SERIAL_BITS - 1))
        assert_eq!(Serial(12).partial_cmp(&Serial(3_000_000_012)),
                   Some(Greater));
        assert_ne!(Serial(12).partial_cmp(&Serial(13)), Some(Greater));

        // (i1 > i2 and i1 - i2 < 2^(SERIAL_BITS - 1))
        assert_eq!(Serial(13).partial_cmp(&Serial(12)), Some(Greater));
        assert_ne!(Serial(3_000_000_012).partial_cmp(&Serial(12)),
                   Some(Greater));
        
        // Er, I think that’s what’s left.
        assert_eq!(Serial(1).partial_cmp(&Serial(0x8000_0001)), None);
        assert_eq!(Serial(0x8000_0001).partial_cmp(&Serial(1)), None);
    }
}