1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
//! Functions and data from the RPI Bootrom.
//!
//! From the [RP2040 datasheet](https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf), Section 2.8.3.1:
//!
//! > The Bootrom contains a number of public functions that provide useful
//! > RP2040 functionality that might be needed in the absence of any other code
//! > on the device, as well as highly optimized versions of certain key
//! > functionality that would otherwise have to take up space in most user
//! > binaries.

/// A bootrom function table code.
pub type RomFnTableCode = [u8; 2];

/// This function searches for (table)
type RomTableLookupFn<T> = unsafe extern "C" fn(*const u16, u32) -> T;

/// The following addresses are described at `2.8.2. Bootrom Contents`
/// Pointer to the lookup table function supplied by the rom.
const ROM_TABLE_LOOKUP_PTR: *const u16 = 0x0000_0018 as _;

/// Pointer to helper functions lookup table.
const FUNC_TABLE: *const u16 = 0x0000_0014 as _;

/// Pointer to the public data lookup table.
const DATA_TABLE: *const u16 = 0x0000_0016 as _;

/// Address of the version number of the ROM.
const VERSION_NUMBER: *const u8 = 0x0000_0013 as _;

/// Retrieve rom content from a table using a code.
fn rom_table_lookup<T>(table: *const u16, tag: RomFnTableCode) -> T {
    unsafe {
        let rom_table_lookup_ptr: *const u32 = rom_hword_as_ptr(ROM_TABLE_LOOKUP_PTR);
        let rom_table_lookup: RomTableLookupFn<T> = core::mem::transmute(rom_table_lookup_ptr);
        rom_table_lookup(
            rom_hword_as_ptr(table) as *const u16,
            u16::from_le_bytes(tag) as u32,
        )
    }
}

/// To save space, the ROM likes to store memory pointers (which are 32-bit on
/// the Cortex-M0+) using only the bottom 16-bits. The assumption is that the
/// values they point at live in the first 64 KiB of ROM, and the ROM is mapped
/// to address `0x0000_0000` and so 16-bits are always sufficient.
///
/// This functions grabs a 16-bit value from ROM and expands it out to a full 32-bit pointer.
unsafe fn rom_hword_as_ptr(rom_address: *const u16) -> *const u32 {
    let ptr: u16 = *rom_address;
    ptr as *const u32
}

macro_rules! declare_rom_function {
    (
        $(#[$outer:meta])*
        fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty
        $lookup:block
    ) => {
        #[doc = r"Additional access for the `"]
        #[doc = stringify!($name)]
        #[doc = r"` ROM function."]
        pub mod $name {
            /// Retrieve a function pointer.
            #[cfg(not(feature = "rom-func-cache"))]
            pub fn ptr() -> extern "C" fn( $($argname: $ty),* ) -> $ret {
                let p: *const u32 = $lookup;
                unsafe {
                    let func : extern "C" fn( $($argname: $ty),* ) -> $ret = core::mem::transmute(p);
                    func
                }
            }

            /// Retrieve a function pointer.
            #[cfg(feature = "rom-func-cache")]
            pub fn ptr() -> extern "C" fn( $($argname: $ty),* ) -> $ret {
                use core::sync::atomic::{AtomicU16, Ordering};

                // All pointers in the ROM fit in 16 bits, so we don't need a
                // full width word to store the cached value.
                static CACHED_PTR: AtomicU16 = AtomicU16::new(0);
                // This is safe because the lookup will always resolve
                // to the same value.  So even if an interrupt or another
                // core starts at the same time, it just repeats some
                // work and eventually writes back the correct value.
                let p: *const u32 = match CACHED_PTR.load(Ordering::Relaxed) {
                    0 => {
                        let raw: *const u32 = $lookup;
                        CACHED_PTR.store(raw as u16, Ordering::Relaxed);
                        raw
                    },
                    val => val as *const u32,
                };
                unsafe {
                    let func : extern "C" fn( $($argname: $ty),* ) -> $ret = core::mem::transmute(p);
                    func
                }
            }
        }

        $(#[$outer])*
        pub extern "C" fn $name( $($argname: $ty),* ) -> $ret {
            $name::ptr()($($argname),*)
        }
    };

    (
        $(#[$outer:meta])*
        unsafe fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty
        $lookup:block
    ) => {
        #[doc = r"Additional access for the `"]
        #[doc = stringify!($name)]
        #[doc = r"` ROM function."]
        pub mod $name {
            /// Retrieve a function pointer.
            #[cfg(not(feature = "rom-func-cache"))]
            pub fn ptr() -> unsafe extern "C" fn( $($argname: $ty),* ) -> $ret {
                let p: *const u32 = $lookup;
                unsafe {
                    let func : unsafe extern "C" fn( $($argname: $ty),* ) -> $ret = core::mem::transmute(p);
                    func
                }
            }

            /// Retrieve a function pointer.
            #[cfg(feature = "rom-func-cache")]
            pub fn ptr() -> unsafe extern "C" fn( $($argname: $ty),* ) -> $ret {
                use core::sync::atomic::{AtomicU16, Ordering};

                // All pointers in the ROM fit in 16 bits, so we don't need a
                // full width word to store the cached value.
                static CACHED_PTR: AtomicU16 = AtomicU16::new(0);
                // This is safe because the lookup will always resolve
                // to the same value.  So even if an interrupt or another
                // core starts at the same time, it just repeats some
                // work and eventually writes back the correct value.
                let p: *const u32 = match CACHED_PTR.load(Ordering::Relaxed) {
                    0 => {
                        let raw: *const u32 = $lookup;
                        CACHED_PTR.store(raw as u16, Ordering::Relaxed);
                        raw
                    },
                    val => val as *const u32,
                };
                unsafe {
                    let func : unsafe extern "C" fn( $($argname: $ty),* ) -> $ret = core::mem::transmute(p);
                    func
                }
            }
        }

        $(#[$outer])*
        /// # Safety
        ///
        /// This is a low-level C function. It may be difficult to call safely from
        /// Rust. If in doubt, check the RP2040 datasheet for details and do your own
        /// safety evaluation.
        pub unsafe extern "C" fn $name( $($argname: $ty),* ) -> $ret {
            $name::ptr()($($argname),*)
        }
    };
}

macro_rules! rom_functions {
    () => {};

    (
        $(#[$outer:meta])*
        $c:literal fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty;

        $($rest:tt)*
    ) => {
        declare_rom_function! {
            $(#[$outer])*
            fn $name( $($argname: $ty),* ) -> $ret {
                $crate::rom_data::rom_table_lookup($crate::rom_data::FUNC_TABLE, *$c)
            }
        }

        rom_functions!($($rest)*);
    };

    (
        $(#[$outer:meta])*
        $c:literal unsafe fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty;

        $($rest:tt)*
    ) => {
        declare_rom_function! {
            $(#[$outer])*
            unsafe fn $name( $($argname: $ty),* ) -> $ret {
                $crate::rom_data::rom_table_lookup($crate::rom_data::FUNC_TABLE, *$c)
            }
        }

        rom_functions!($($rest)*);
    };
}

rom_functions! {
    /// Return a count of the number of 1 bits in value.
    b"P3" fn popcount32(value: u32) -> u32;

    /// Return the bits of value in the reverse order.
    b"R3" fn reverse32(value: u32) -> u32;

    /// Return the number of consecutive high order 0 bits of value. If value is zero, returns 32.
    b"L3" fn clz32(value: u32) -> u32;

    /// Return the number of consecutive low order 0 bits of value. If value is zero, returns 32.
    b"T3" fn ctz32(value: u32) -> u32;

    /// Resets the RP2040 and uses the watchdog facility to re-start in BOOTSEL mode:
    ///   * gpio_activity_pin_mask is provided to enable an 'activity light' via GPIO attached LED
    ///     for the USB Mass Storage Device:
    ///     * 0 No pins are used as per cold boot.
    ///     * Otherwise a single bit set indicating which GPIO pin should be set to output and
    ///       raised whenever there is mass storage activity from the host.
    ///  * disable_interface_mask may be used to control the exposed USB interfaces:
    ///    * 0 To enable both interfaces (as per cold boot).
    ///    * 1 To disable the USB Mass Storage Interface.
    ///    * 2 to Disable the USB PICOBOOT Interface.
    b"UB" fn reset_to_usb_boot(gpio_activity_pin_mask: u32, disable_interface_mask: u32) -> ();

    /// Sets n bytes start at ptr to the value c and returns ptr
    b"MS" unsafe fn memset(ptr: *mut u8, c: u8, n: u32) -> *mut u8;

    /// Sets n bytes start at ptr to the value c and returns ptr.
    ///
    /// Note this is a slightly more efficient variant of _memset that may only
    /// be used if ptr is word aligned.
    // Note the datasheet does not match the actual ROM for the code here, see
    // https://github.com/raspberrypi/pico-feedback/issues/217
    b"S4" unsafe fn memset4(ptr: *mut u32, c: u8, n: u32) -> *mut u32;

    /// Copies n bytes starting at src to dest and returns dest. The results are undefined if the
    /// regions overlap.
    b"MC" unsafe fn memcpy(dest: *mut u8, src: *const u8, n: u32) -> *mut u8;

    /// Copies n bytes starting at src to dest and returns dest. The results are undefined if the
    /// regions overlap.
    ///
    /// Note this is a slightly more efficient variant of _memcpy that may only be
    /// used if dest and src are word aligned.
    b"C4" unsafe fn memcpy44(dest: *mut u32, src: *const u32, n: u32) -> *mut u8;

    /// Restore all QSPI pad controls to their default state, and connect the SSI to the QSPI pads.
    b"IF" unsafe fn connect_internal_flash() -> ();

    /// First set up the SSI for serial-mode operations, then issue the fixed XIP exit sequence.
    ///
    /// Note that the bootrom code uses the IO forcing logic to drive the CS pin, which must be
    /// cleared before returning the SSI to XIP mode (e.g. by a call to _flash_flush_cache). This
    /// function configures the SSI with a fixed SCK clock divisor of /6.
    b"EX" unsafe fn flash_exit_xip() -> ();

    /// Erase a count bytes, starting at addr (offset from start of flash). Optionally, pass a
    /// block erase command e.g. D8h block erase, and the size of the block erased by this
    /// command — this function will use the larger block erase where possible, for much higher
    /// erase speed. addr must be aligned to a 4096-byte sector, and count must be a multiple of
    /// 4096 bytes.
    b"RE" unsafe fn flash_range_erase(addr: u32, count: usize, block_size: u32, block_cmd: u8) -> ();

    /// Program data to a range of flash addresses starting at `addr` (and
    /// offset from the start of flash) and `count` bytes in size. The value
    /// `addr` must be aligned to a 256-byte boundary, and `count` must be a
    /// multiple of 256.
    b"RP" unsafe fn flash_range_program(addr: u32, data: *const u8, count: usize) -> ();

    /// Flush and enable the XIP cache. Also clears the IO forcing on QSPI CSn, so that the SSI can
    /// drive the flashchip select as normal.
    b"FC" unsafe fn flash_flush_cache() -> ();

    /// Configure the SSI to generate a standard 03h serial read command, with 24 address bits,
    /// upon each XIP access. This is a very slow XIP configuration, but is very widely supported.
    /// The debugger calls this function after performing a flash erase/programming operation, so
    /// that the freshly-programmed code and data is visible to the debug host, without having to
    /// know exactly what kind of flash device is connected.
    b"CX" unsafe fn flash_enter_cmd_xip() -> ();

    /// This is the method that is entered by core 1 on reset to wait to be launched by core 0.
    /// There are few cases where you should call this method (resetting core 1 is much better).
    /// This method does not return and should only ever be called on core 1.
    b"WV" unsafe fn wait_for_vector() -> !;
}

// Various C intrinsics in the ROM
intrinsics! {
    #[alias = __popcountdi2]
    extern "C" fn __popcountsi2(x: u32) -> u32 {
        popcount32(x)
    }

    #[alias = __clzdi2]
    extern "C" fn __clzsi2(x: u32) -> u32 {
        clz32(x)
    }

    #[alias = __ctzdi2]
    extern "C" fn __ctzsi2(x: u32) -> u32 {
        ctz32(x)
    }

    // __rbit is only unofficial, but it show up in the ARM documentation,
    // so may as well hook it up.
    #[alias = __rbitl]
    extern "C" fn __rbit(x: u32) -> u32 {
        reverse32(x)
    }

    unsafe extern "aapcs" fn __aeabi_memset(dest: *mut u8, n: usize, c: i32) -> () {
        // Different argument order
        memset(dest, c as u8, n as u32);
    }

    #[alias = __aeabi_memset8]
    unsafe extern "aapcs" fn __aeabi_memset4(dest: *mut u8, n: usize, c: i32) -> () {
        // Different argument order
        memset4(dest as *mut u32, c as u8, n as u32);
    }

    unsafe extern "aapcs" fn __aeabi_memclr(dest: *mut u8, n: usize) -> () {
        memset(dest, 0, n as u32);
    }

    #[alias = __aeabi_memclr8]
    unsafe extern "aapcs" fn __aeabi_memclr4(dest: *mut u8, n: usize) -> () {
        memset4(dest as *mut u32, 0, n as u32);
    }

    unsafe extern "aapcs" fn __aeabi_memcpy(dest: *mut u8, src: *const u8, n: usize) -> () {
        memcpy(dest, src, n as u32);
    }

    #[alias = __aeabi_memcpy8]
    unsafe extern "aapcs" fn __aeabi_memcpy4(dest: *mut u8, src: *const u8, n: usize) -> () {
        memcpy44(dest as *mut u32, src as *const u32, n as u32);
    }
}

unsafe fn convert_str(s: *const u8) -> &'static str {
    let mut end = s;
    while *end != 0 {
        end = end.add(1);
    }
    let s = core::slice::from_raw_parts(s, end.offset_from(s) as usize);
    core::str::from_utf8_unchecked(s)
}

/// The version number of the rom.
pub fn rom_version_number() -> u8 {
    unsafe { *VERSION_NUMBER }
}

/// The Raspberry Pi Trading Ltd copyright string.
pub fn copyright_string() -> &'static str {
    let s: *const u8 = rom_table_lookup(DATA_TABLE, *b"CR");
    unsafe { convert_str(s) }
}

/// The 8 most significant hex digits of the Bootrom git revision.
pub fn git_revision() -> u32 {
    let s: *const u32 = rom_table_lookup(DATA_TABLE, *b"GR");
    unsafe { *s }
}

/// The start address of the floating point library code and data.
///
/// This and fplib_end along with the individual function pointers in
/// soft_float_table can be used to copy the floating point implementation into
/// RAM if desired.
pub fn fplib_start() -> *const u8 {
    rom_table_lookup(DATA_TABLE, *b"FS")
}

/// See Table 180 in the RP2040 datasheet for the contents of this table.
pub fn soft_float_table() -> *const usize {
    rom_table_lookup(DATA_TABLE, *b"SF")
}

/// The end address of the floating point library code and data.
pub fn fplib_end() -> *const u8 {
    rom_table_lookup(DATA_TABLE, *b"FE")
}

/// This entry is only present in the V2 bootrom. See Table 182 in the RP2040 datasheet for the contents of this table.
pub fn soft_double_table() -> *const usize {
    if rom_version_number() < 2 {
        panic!(
            "Double precision operations require V2 bootrom (found: V{})",
            rom_version_number()
        );
    }
    rom_table_lookup(DATA_TABLE, *b"SD")
}

/// ROM functions using single-precision arithmetic (i.e. 'f32' in Rust terms)
pub mod float_funcs {

    macro_rules! make_functions {
        (
            $(
                $(#[$outer:meta])*
                $offset:literal $name:ident (
                    $( $aname:ident : $aty:ty ),*
                ) -> $ret:ty;
            )*
        ) => {
            $(
                declare_rom_function! {
                    $(#[$outer])*
                    fn $name( $( $aname : $aty ),* ) -> $ret {
                        let table: *const usize = $crate::rom_data::soft_float_table();
                        unsafe {
                            // This is the entry in the table. Our offset is given as a
                            // byte offset, but we want the table index (each pointer in
                            // the table is 4 bytes long)
                            let entry: *const usize = table.offset($offset / 4);
                            // Read the pointer from the table
                            core::ptr::read(entry) as *const u32
                        }
                    }
                }
            )*
        }
    }

    make_functions! {
        /// Calculates `a + b`
        0x00 fadd(a: f32, b: f32) -> f32;
        /// Calculates `a - b`
        0x04 fsub(a: f32, b: f32) -> f32;
        /// Calculates `a * b`
        0x08 fmul(a: f32, b: f32) -> f32;
        /// Calculates `a / b`
        0x0c fdiv(a: f32, b: f32) -> f32;

        // 0x10 and 0x14 are deprecated

        /// Calculates `sqrt(v)` (or return -Infinity if v is negative)
        0x18 fsqrt(v: f32) -> f32;
        /// Converts an f32 to a signed integer,
        /// rounding towards -Infinity, and clamping the result to lie within the
        /// range `-0x80000000` to `0x7FFFFFFF`
        0x1c float_to_int(v: f32) -> i32;
        /// Converts an f32 to an signed fixed point
        /// integer representation where n specifies the position of the binary
        /// point in the resulting fixed point representation, e.g.
        /// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity,
        /// and clamps the resulting integer to lie within the range `0x00000000` to
        /// `0xFFFFFFFF`
        0x20 float_to_fix(v: f32, n: i32) -> i32;
        /// Converts an f32 to an unsigned integer,
        /// rounding towards -Infinity, and clamping the result to lie within the
        /// range `0x00000000` to `0xFFFFFFFF`
        0x24 float_to_uint(v: f32) -> u32;
        /// Converts an f32 to an unsigned fixed point
        /// integer representation where n specifies the position of the binary
        /// point in the resulting fixed point representation, e.g.
        /// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity,
        /// and clamps the resulting integer to lie within the range `0x00000000` to
        /// `0xFFFFFFFF`
        0x28 float_to_ufix(v: f32, n: i32) -> u32;
        /// Converts a signed integer to the nearest
        /// f32 value, rounding to even on tie
        0x2c int_to_float(v: i32) -> f32;
        /// Converts a signed fixed point integer
        /// representation to the nearest f32 value, rounding to even on tie. `n`
        /// specifies the position of the binary point in fixed point, so `f =
        /// nearest(v/(2^n))`
        0x30 fix_to_float(v: i32, n: i32) -> f32;
        /// Converts an unsigned integer to the nearest
        /// f32 value, rounding to even on tie
        0x34 uint_to_float(v: u32) -> f32;
        /// Converts an unsigned fixed point integer
        /// representation to the nearest f32 value, rounding to even on tie. `n`
        /// specifies the position of the binary point in fixed point, so `f =
        /// nearest(v/(2^n))`
        0x38 ufix_to_float(v: u32, n: i32) -> f32;
        /// Calculates the cosine of `angle`. The value
        /// of `angle` is in radians, and must be in the range `-128` to `128`
        0x3c fcos(angle: f32) -> f32;
        /// Calculates the sine of `angle`. The value of
        /// `angle` is in radians, and must be in the range `-128` to `128`
        0x40 fsin(angle: f32) -> f32;
        /// Calculates the tangent of `angle`. The value
        /// of `angle` is in radians, and must be in the range `-128` to `128`
        0x44 ftan(angle: f32) -> f32;

        // 0x48 is deprecated

        /// Calculates the exponential value of `v`,
        /// i.e. `e ** v`
        0x4c fexp(v: f32) -> f32;
        /// Calculates the natural logarithm of `v`. If `v <= 0` return -Infinity
        0x50 fln(v: f32) -> f32;
    }

    macro_rules! make_functions_v2 {
        (
            $(
                $(#[$outer:meta])*
                $offset:literal $name:ident (
                    $( $aname:ident : $aty:ty ),*
                ) -> $ret:ty;
            )*
        ) => {
            $(
                declare_rom_function! {
                    $(#[$outer])*
                    fn $name( $( $aname : $aty ),* ) -> $ret {
                        if $crate::rom_data::rom_version_number() < 2 {
                            panic!(
                                "Floating point function requires V2 bootrom (found: V{})",
                                $crate::rom_data::rom_version_number()
                            );
                        }
                        let table: *const usize = $crate::rom_data::soft_float_table();
                        unsafe {
                            // This is the entry in the table. Our offset is given as a
                            // byte offset, but we want the table index (each pointer in
                            // the table is 4 bytes long)
                            let entry: *const usize = table.offset($offset / 4);
                            // Read the pointer from the table
                            core::ptr::read(entry) as *const u32
                        }
                    }
                }
            )*
        }
    }

    // These are only on BootROM v2 or higher
    make_functions_v2! {
        /// Compares two floating point numbers, returning:
        ///     • 0 if a == b
        ///     • -1 if a < b
        ///     • 1 if a > b
        0x54 fcmp(a: f32, b: f32) -> i32;
        /// Computes the arc tangent of `y/x` using the
        /// signs of arguments to determine the correct quadrant
        0x58 fatan2(y: f32, x: f32) -> f32;
        /// Converts a signed 64-bit integer to the
        /// nearest f32 value, rounding to even on tie
        0x5c int64_to_float(v: i64) -> f32;
        /// Converts a signed fixed point 64-bit integer
        /// representation to the nearest f32 value, rounding to even on tie. `n`
        /// specifies the position of the binary point in fixed point, so `f =
        /// nearest(v/(2^n))`
        0x60 fix64_to_float(v: i64, n: i32) -> f32;
        /// Converts an unsigned 64-bit integer to the
        /// nearest f32 value, rounding to even on tie
        0x64 uint64_to_float(v: u64) -> f32;
        /// Converts an unsigned fixed point 64-bit
        /// integer representation to the nearest f32 value, rounding to even on
        /// tie. `n` specifies the position of the binary point in fixed point, so
        /// `f = nearest(v/(2^n))`
        0x68 ufix64_to_float(v: u64, n: i32) -> f32;
        /// Convert an f32 to a signed 64-bit integer, rounding towards -Infinity,
        /// and clamping the result to lie within the range `-0x8000000000000000` to
        /// `0x7FFFFFFFFFFFFFFF`
        0x6c float_to_int64(v: f32) -> i64;
        /// Converts an f32 to a signed fixed point
        /// 64-bit integer representation where n specifies the position of the
        /// binary point in the resulting fixed point representation - e.g. `f(0.5f,
        /// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the
        /// resulting integer to lie within the range `-0x8000000000000000` to
        /// `0x7FFFFFFFFFFFFFFF`
        0x70 float_to_fix64(v: f32, n: i32) -> i64;
        /// Converts an f32 to an unsigned 64-bit
        /// integer, rounding towards -Infinity, and clamping the result to lie
        /// within the range `0x0000000000000000` to `0xFFFFFFFFFFFFFFFF`
        0x74 float_to_uint64(v: f32) -> u64;
        /// Converts an f32 to an unsigned fixed point
        /// 64-bit integer representation where n specifies the position of the
        /// binary point in the resulting fixed point representation, e.g. `f(0.5f,
        /// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the
        /// resulting integer to lie within the range `0x0000000000000000` to
        /// `0xFFFFFFFFFFFFFFFF`
        0x78 float_to_ufix64(v: f32, n: i32) -> u64;
        /// Converts an f32 to an f64.
        0x7c float_to_double(v: f32) -> f64;
    }
}

/// Functions using double-precision arithmetic (i.e. 'f64' in Rust terms)
pub mod double_funcs {

    macro_rules! make_double_funcs {
        (
            $(
                $(#[$outer:meta])*
                $offset:literal $name:ident (
                    $( $aname:ident : $aty:ty ),*
                ) -> $ret:ty;
            )*
        ) => {
            $(
                declare_rom_function! {
                    $(#[$outer])*
                    fn $name( $( $aname : $aty ),* ) -> $ret {
                        let table: *const usize = $crate::rom_data::soft_double_table();
                        unsafe {
                            // This is the entry in the table. Our offset is given as a
                            // byte offset, but we want the table index (each pointer in
                            // the table is 4 bytes long)
                            let entry: *const usize = table.offset($offset / 4);
                            // Read the pointer from the table
                            core::ptr::read(entry) as *const u32
                        }
                    }
                }
            )*
        }
    }

    make_double_funcs! {
        /// Calculates `a + b`
        0x00 dadd(a: f64, b: f64) -> f64;
        /// Calculates `a - b`
        0x04 dsub(a: f64, b: f64) -> f64;
        /// Calculates `a * b`
        0x08 dmul(a: f64, b: f64) -> f64;
        /// Calculates `a / b`
        0x0c ddiv(a: f64, b: f64) -> f64;

        // 0x10 and 0x14 are deprecated

        /// Calculates `sqrt(v)` (or return -Infinity if v is negative)
        0x18 dsqrt(v: f64) -> f64;
        /// Converts an f64 to a signed integer,
        /// rounding towards -Infinity, and clamping the result to lie within the
        /// range `-0x80000000` to `0x7FFFFFFF`
        0x1c double_to_int(v: f64) -> i32;
        /// Converts an f64 to an signed fixed point
        /// integer representation where n specifies the position of the binary
        /// point in the resulting fixed point representation, e.g.
        /// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity,
        /// and clamps the resulting integer to lie within the range `0x00000000` to
        /// `0xFFFFFFFF`
        0x20 double_to_fix(v: f64, n: i32) -> i32;
        /// Converts an f64 to an unsigned integer,
        /// rounding towards -Infinity, and clamping the result to lie within the
        /// range `0x00000000` to `0xFFFFFFFF`
        0x24 double_to_uint(v: f64) -> u32;
        /// Converts an f64 to an unsigned fixed point
        /// integer representation where n specifies the position of the binary
        /// point in the resulting fixed point representation, e.g.
        /// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity,
        /// and clamps the resulting integer to lie within the range `0x00000000` to
        /// `0xFFFFFFFF`
        0x28 double_to_ufix(v: f64, n: i32) -> u32;
        /// Converts a signed integer to the nearest
        /// double value, rounding to even on tie
        0x2c int_to_double(v: i32) -> f64;
        /// Converts a signed fixed point integer
        /// representation to the nearest double value, rounding to even on tie. `n`
        /// specifies the position of the binary point in fixed point, so `f =
        /// nearest(v/(2^n))`
        0x30 fix_to_double(v: i32, n: i32) -> f64;
        /// Converts an unsigned integer to the nearest
        /// double value, rounding to even on tie
        0x34 uint_to_double(v: u32) -> f64;
        /// Converts an unsigned fixed point integer
        /// representation to the nearest double value, rounding to even on tie. `n`
        /// specifies the position of the binary point in fixed point, so f =
        /// nearest(v/(2^n))
        0x38 ufix_to_double(v: u32, n: i32) -> f64;
        /// Calculates the cosine of `angle`. The value
        /// of `angle` is in radians, and must be in the range `-1024` to `1024`
        0x3c dcos(angle: f64) -> f64;
        /// Calculates the sine of `angle`. The value of
        /// `angle` is in radians, and must be in the range `-1024` to `1024`
        0x40 dsin(angle: f64) -> f64;
        /// Calculates the tangent of `angle`. The value
        /// of `angle` is in radians, and must be in the range `-1024` to `1024`
        0x44 dtan(angle: f64) -> f64;

        // 0x48 is deprecated

        /// Calculates the exponential value of `v`,
        /// i.e. `e ** v`
        0x4c dexp(v: f64) -> f64;
        /// Calculates the natural logarithm of v. If v <= 0 return -Infinity
        0x50 dln(v: f64) -> f64;

        // These are only on BootROM v2 or higher

        /// Compares two floating point numbers, returning:
        ///     • 0 if a == b
        ///     • -1 if a < b
        ///     • 1 if a > b
        0x54 dcmp(a: f64, b: f64) -> i32;
        /// Computes the arc tangent of `y/x` using the
        /// signs of arguments to determine the correct quadrant
        0x58 datan2(y: f64, x: f64) -> f64;
        /// Converts a signed 64-bit integer to the
        /// nearest double value, rounding to even on tie
        0x5c int64_to_double(v: i64) -> f64;
        /// Converts a signed fixed point 64-bit integer
        /// representation to the nearest double value, rounding to even on tie. `n`
        /// specifies the position of the binary point in fixed point, so `f =
        /// nearest(v/(2^n))`
        0x60 fix64_to_double(v: i64, n: i32) -> f64;
        /// Converts an unsigned 64-bit integer to the
        /// nearest double value, rounding to even on tie
        0x64 uint64_to_double(v: u64) -> f64;
        /// Converts an unsigned fixed point 64-bit
        /// integer representation to the nearest double value, rounding to even on
        /// tie. `n` specifies the position of the binary point in fixed point, so
        /// `f = nearest(v/(2^n))`
        0x68 ufix64_to_double(v: u64, n: i32) -> f64;
        /// Convert an f64 to a signed 64-bit integer, rounding towards -Infinity,
        /// and clamping the result to lie within the range `-0x8000000000000000` to
        /// `0x7FFFFFFFFFFFFFFF`
        0x6c double_to_int64(v: f64) -> i64;
        /// Converts an f64 to a signed fixed point
        /// 64-bit integer representation where n specifies the position of the
        /// binary point in the resulting fixed point representation - e.g. `f(0.5f,
        /// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the
        /// resulting integer to lie within the range `-0x8000000000000000` to
        /// `0x7FFFFFFFFFFFFFFF`
        0x70 double_to_fix64(v: f64, n: i32) -> i64;
        /// Converts an f64 to an unsigned 64-bit
        /// integer, rounding towards -Infinity, and clamping the result to lie
        /// within the range `0x0000000000000000` to `0xFFFFFFFFFFFFFFFF`
        0x74 double_to_uint64(v: f64) -> u64;
        /// Converts an f64 to an unsigned fixed point
        /// 64-bit integer representation where n specifies the position of the
        /// binary point in the resulting fixed point representation, e.g. `f(0.5f,
        /// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the
        /// resulting integer to lie within the range `0x0000000000000000` to
        /// `0xFFFFFFFFFFFFFFFF`
        0x78 double_to_ufix64(v: f64, n: i32) -> u64;
        /// Converts an f64 to an f32
        0x7c double_to_float(v: f64) -> f32;
    }
}