1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
//! # I2C Peripheral (slave) implementation
//!
//! The RP2040 I2C block can behave as a peripheral node on an I2C bus.
//!
//! In order to handle peripheral transactions this driver exposes an iterator streaming I2C event
//! that the usercode must handle to properly handle the I2C communitation. See [`Event`] for a
//! list of events to handle.
//!
//! Although [`Start`](Event::Start), [`Restart`](Event::Restart) and [`Stop`](Event::Stop)
//! events may not require any action on the device, [`TransferRead`](Event::TransferRead) and
//! [`TransferWrite`](Event::TransferWrite) require some action:
//!
//! - [`TransferRead`](Event::TransferRead): A controller is attempting to read from this peripheral.  
//!   The I2C block holds the SCL line low (clock stretching) until data is pushed to the transmission
//!   FIFO by the user application using [`write`](I2C::write).  
//!   Data remaining in the FIFO when the bus constroller stops the transfer are ignored & the fifo
//!   is flushed.
//! - [`TransferWrite`](Event::TransferWrite): A controller is sending data to this peripheral.  
//!   The I2C block holds the SCL line (clock stretching) until there is room for more data in the
//!   Rx FIFO using [`read`](I2C::read).  
//!   Data are automatically acknowledged by the I2C block and it is not possible to NACK incoming
//!   data coming to the rp2040.
//!
//! ## Warning
//!
//! `Start`, `Restart` and `Stop` events may not be reported before or after a write operations.
//! This is because several write operation may take place and complete before the core has time to
//! react. All the data sent will be stored in the peripheral FIFO but it will not be possible to
//! identify between which bytes should the start/restart/stop events precicely took place.
//!
//! Because a Read operation will always cause a pause waiting for the firmware's input, a `Start`
//! (or `Restart` if the peripheral is already active) will always be reported. However, this does
//! not mean no other event occurred in the mean time.
//!
//! For example, let's consider the following sequence:
//!
//! `Start, Write, Stop, Start, Write, Restart, Read, Stop.`
//!
//! Depending on the firmware's and bus' speed, this driver may only report:
//! - `Start, Write, Restart, Read, Stop`

use core::{ops::Deref, task::Poll};

use embedded_hal::i2c::AddressMode;

use super::{Peripheral, ValidAddress, ValidPinScl, ValidPinSda, I2C};
use crate::{
    async_utils::{sealed::Wakeable, AsyncPeripheral, CancellablePollFn},
    pac::{i2c0::RegisterBlock, RESETS},
    resets::SubsystemReset,
};

/// I2C bus events
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Event {
    /// Start condition has been detected.
    Start,
    /// Restart condition has been detected.
    Restart,
    /// The controller requests data.
    TransferRead,
    /// The controller sends data.
    TransferWrite,
    /// Stop condition detected.
    Stop,
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub(crate) enum State {
    Idle,
    Active,
    Read,
    Write,
}

impl<T, Sda, Scl> I2C<T, (Sda, Scl), Peripheral>
where
    T: SubsystemReset + Deref<Target = RegisterBlock>,
    Sda: ValidPinSda<T>,
    Scl: ValidPinScl<T>,
{
    /// Configures the I2C peripheral to work in peripheral mode
    ///
    /// The bus *MUST* be idle when this method is called.
    #[allow(clippy::type_complexity)]
    pub fn new_peripheral_event_iterator<A: ValidAddress + AddressMode>(
        i2c: T,
        sda_pin: Sda,
        scl_pin: Scl,
        resets: &mut RESETS,
        addr: A,
    ) -> Self {
        i2c.reset_bring_down(resets);
        i2c.reset_bring_up(resets);

        i2c.ic_enable().write(|w| w.enable().disabled());

        // TODO: Validate address?
        let addr = addr.into();
        // SAFETY: Only address by this function. IC_SAR spec filters out bits 15:10.
        // Any value is valid for the controller. They may not be for the bus itself though.
        i2c.ic_sar().write(|w| unsafe { w.ic_sar().bits(addr) });
        // select peripheral mode & speed
        i2c.ic_con().modify(|_, w| {
            // run in fast mode
            w.speed().fast();
            // setup slave mode
            w.master_mode().disabled();
            w.ic_slave_disable().slave_enabled();
            // hold scl when fifo's full
            w.rx_fifo_full_hld_ctrl().enabled();
            w.ic_restart_en().enabled();
            w.ic_10bitaddr_slave().variant(A::BIT_ADDR_S);
            w
        });

        // Clear FIFO threshold
        // SAFETY: Only address by this function. The field is 8bit long. 0 is a valid value.
        i2c.ic_tx_tl().write(|w| unsafe { w.tx_tl().bits(0) });
        i2c.ic_rx_tl().write(|w| unsafe { w.rx_tl().bits(0) });

        i2c.ic_clr_intr().read();

        let mut me = Self {
            i2c,
            pins: (sda_pin, scl_pin),
            mode: Peripheral { state: State::Idle },
        };
        me.unmask_intr();
        // Enable I2C block
        me.i2c.ic_enable().write(|w| w.enable().enabled());

        me
    }
}

fn unmask_intr(i2c: &RegisterBlock) {
    // SAFETY: 0 is a valid value meaning all irq masked.
    // This operation is atomic, `write_with_zero` only writes to the register.
    unsafe {
        i2c.ic_intr_mask().write_with_zero(|w| {
            // Only keep these IRQ enabled.
            w.m_start_det()
                .disabled()
                .m_rd_req()
                .disabled()
                .m_rx_full()
                .disabled()
                .m_stop_det()
                .disabled()
        });
    }
}

/// SAFETY: Takes a non-mutable reference to RegisterBlock but mutates its `ic_intr_mask` register.
unsafe fn mask_intr(i2c: &RegisterBlock) {
    // 0 is a valid value and means all flag masked.
    unsafe { i2c.ic_intr_mask().write_with_zero(|w| w) }
}

impl<T: Deref<Target = RegisterBlock>, PINS> I2C<T, PINS, Peripheral> {
    fn unmask_intr(&mut self) {
        unmask_intr(&self.i2c)
    }
    fn mask_intr(&mut self) {
        // SAFETY: We are the only owner of this register block.
        unsafe { mask_intr(&self.i2c) }
    }

    /// Push up to `usize::min(TX_FIFO_SIZE, buf.len())` bytes to the TX FIFO.
    /// Returns the number of bytes pushed to the FIFO. Note this does *not* reflect how many bytes
    /// are effectively received by the controller.
    pub fn write(&mut self, buf: &[u8]) -> usize {
        // just in case, clears previous tx abort.
        self.i2c.ic_clr_tx_abrt().read();

        let mut sent = 0;
        for &b in buf.iter() {
            if self.tx_fifo_full() {
                break;
            }

            // SAFETY: dat field is 8bits long. All values are valid.
            self.i2c.ic_data_cmd().write(|w| unsafe { w.dat().bits(b) });
            sent += 1;
        }
        // serve a pending read request
        self.i2c.ic_clr_rd_req().read();
        sent
    }

    /// Pull up to `usize::min(RX_FIFO_SIZE, buf.len())` bytes from the RX FIFO.
    pub fn read(&mut self, buf: &mut [u8]) -> usize {
        buf.iter_mut().zip(self).map(|(b, r)| *b = r).count()
    }
}

/// This allows I2C to be used with `core::iter::Extend`.
impl<T: Deref<Target = RegisterBlock>, PINS> Iterator for I2C<T, PINS, Peripheral> {
    type Item = u8;

    fn next(&mut self) -> Option<Self::Item> {
        if self.rx_fifo_empty() {
            None
        } else {
            Some(self.i2c.ic_data_cmd().read().dat().bits())
        }
    }
}
impl<T: Deref<Target = RegisterBlock>, PINS> I2C<T, PINS, Peripheral> {
    /// Returns the next i2c event if any.
    pub fn next_event(&mut self) -> Option<Event> {
        let stat = self.i2c.ic_raw_intr_stat().read();

        match self.mode.state {
            State::Idle if stat.start_det().bit_is_set() => {
                self.i2c.ic_clr_start_det().read();
                self.mode.state = State::Active;
                Some(Event::Start)
            }
            State::Active if stat.rd_req().bit_is_set() => {
                // Clearing `rd_req` is used by the hardware to detect when the I2C block can stop
                // stretching the clock and start process the data pushed to the FIFO (if any).
                // This is done in `Self::write`.
                self.mode.state = State::Read;
                // If stop_det is set at this point we know that it is related to a previous request,
                // It cannot be due the end of the current request as SCL is held low while waiting
                // for user input.
                if stat.stop_det().bit_is_set() {
                    self.i2c.ic_clr_stop_det().read();
                }
                Some(Event::TransferRead)
            }
            State::Active if !self.rx_fifo_empty() => {
                self.mode.state = State::Write;
                Some(Event::TransferWrite)
            }

            State::Read if stat.rd_req().bit_is_set() => Some(Event::TransferRead),
            State::Write if !self.rx_fifo_empty() => Some(Event::TransferWrite),

            State::Read | State::Write if stat.restart_det().bit_is_set() => {
                self.i2c.ic_clr_restart_det().read();
                self.i2c.ic_clr_start_det().read();
                self.mode.state = State::Active;
                Some(Event::Restart)
            }

            _ if stat.stop_det().bit_is_set() => {
                self.i2c.ic_clr_stop_det().read();
                self.i2c.ic_clr_tx_abrt().read();
                self.mode.state = State::Idle;
                Some(Event::Stop)
            }

            _ => None,
        }
    }
}

macro_rules! impl_wakeable {
    ($i2c:ty) => {
        impl<PINS> AsyncPeripheral for I2C<$i2c, PINS, Peripheral>
        where
            I2C<$i2c, PINS, Peripheral>: $crate::async_utils::sealed::Wakeable,
        {
            /// Wakes an async task (if any) & masks irqs
            fn on_interrupt() {
                unsafe {
                    // This is equivalent to stealing from pac::Peripherals
                    let i2c = &*<$i2c>::ptr();

                    mask_intr(i2c);
                }

                // interrupts are now masked, we can wake the task and return from this handler.
                Self::waker().wake();
            }
        }
    };
}
impl_wakeable!(rp2040_pac::I2C0);
impl_wakeable!(rp2040_pac::I2C1);

impl<T, PINS> I2C<T, PINS, Peripheral>
where
    I2C<T, PINS, Peripheral>: AsyncPeripheral,
    T: Deref<Target = RegisterBlock>,
{
    /// Asynchronously waits for an Event.
    pub async fn wait_next(&mut self) -> Event {
        loop {
            if let Some(evt) = self.next_event() {
                return evt;
            }

            CancellablePollFn::new(
                self,
                |me| {
                    let stat = me.i2c.ic_raw_intr_stat().read();
                    if stat.start_det().bit_is_set()
                        || stat.restart_det().bit_is_set()
                        || stat.stop_det().bit_is_set()
                        || stat.rd_req().bit_is_set()
                        || stat.rx_full().bit_is_set()
                    {
                        Poll::Ready(())
                    } else {
                        Poll::Pending
                    }
                },
                Self::unmask_intr,
                Self::mask_intr,
            )
            .await;
        }
    }
}