1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
use std::{mem::size_of, sync::Arc};

use crate::{SmolStr, TextUnit, SyntaxKind};

/// Internal node in the immutable tree.
/// It has other nodes and tokens as children.
#[derive(Debug, Clone)]
pub struct GreenNode {
    kind: SyntaxKind,
    text_len: TextUnit,
    //TODO: implement llvm::trailing_objects trick
    children: Arc<[GreenElement]>,
}

impl GreenNode {
    /// Creates new Node.
    #[inline]
    pub fn new(kind: SyntaxKind, children: Box<[GreenElement]>) -> GreenNode {
        let text_len = children.iter().map(|x| x.text_len()).sum::<TextUnit>();
        GreenNode { kind, text_len, children: children.into() }
    }

    /// Kind of this node.
    #[inline]
    pub fn kind(&self) -> SyntaxKind {
        self.kind
    }

    /// Length of the text, covered by this node.
    #[inline]
    pub fn text_len(&self) -> TextUnit {
        self.text_len
    }
    /// Children of this node.
    #[inline]
    pub fn children(&self) -> &[GreenElement] {
        &self.children
    }

    /// Gets the child at index.
    pub(crate) fn get_child(&self, index: GreenIndex) -> Option<&GreenElement> {
        self.children.get(index.0 as usize)
    }

    /// Number of memory bytes of occupied by subtree rooted at `self`.
    pub(crate) fn memory_size_of_subtree(&self) -> usize {
        let mut res = size_of::<Self>();
        self.children().iter().for_each(|el| match el {
            GreenElement::Token(token) => {
                res += size_of::<GreenToken>();
                if token.text.is_heap_allocated() {
                    res += token.text.len();
                }
            }
            GreenElement::Node(node) => res += node.memory_size_of_subtree(),
        });

        res
    }
}

/// Index into a green node, which might refer to either Token or Node
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub(crate) struct GreenIndex(pub(crate) u32);

impl GreenIndex {
    pub(crate) fn next(self) -> GreenIndex {
        GreenIndex(self.0 + 1)
    }

    pub(crate) fn prev(self) -> GreenIndex {
        // `GreenNode::get` does a bounds check anyway, so its ok to overflow
        GreenIndex(self.0.wrapping_sub(1))
    }
}

/// Leaf node in the immutable tree.
#[derive(Debug, Clone)]
pub struct GreenToken {
    kind: SyntaxKind,
    text: SmolStr,
}

impl GreenToken {
    /// Creates new Token.
    #[inline]
    pub fn new(kind: SyntaxKind, text: SmolStr) -> GreenToken {
        GreenToken { kind, text }
    }
    /// Kind of this Token.
    #[inline]
    pub fn kind(&self) -> SyntaxKind {
        self.kind
    }
    /// Text of this Token.
    #[inline]
    pub fn text(&self) -> &SmolStr {
        &self.text
    }
    /// Text of this Token.
    #[inline]
    pub fn text_len(&self) -> TextUnit {
        TextUnit::from_usize(self.text.len())
    }
}

/// Leaf or internal node in the immutable tree.
#[derive(Debug, Clone)]
pub enum GreenElement {
    /// Internal node.
    Node(GreenNode),
    /// Leaf token.
    Token(GreenToken),
}

impl From<GreenNode> for GreenElement {
    #[inline]
    fn from(node: GreenNode) -> GreenElement {
        GreenElement::Node(node)
    }
}

impl From<GreenToken> for GreenElement {
    #[inline]
    fn from(token: GreenToken) -> GreenElement {
        GreenElement::Token(token)
    }
}

impl GreenElement {
    /// Returns kind of this element.
    #[inline]
    pub fn kind(&self) -> SyntaxKind {
        match self {
            GreenElement::Node(it) => it.kind(),
            GreenElement::Token(it) => it.kind(),
        }
    }
    /// Returns length of the text covered by this element.
    #[inline]
    pub fn text_len(&self) -> TextUnit {
        match self {
            GreenElement::Node(it) => it.text_len(),
            GreenElement::Token(it) => it.text_len(),
        }
    }
}

/// A checkpoint for maybe wrapping a node. See `GreenNodeBuilder::checkpoint` for details.
#[derive(Clone, Copy, Debug)]
pub struct Checkpoint(usize);

/// A builder for a green tree.
#[derive(Debug)]
pub struct GreenNodeBuilder {
    parents: Vec<(SyntaxKind, usize)>,
    children: Vec<GreenElement>,
}

impl GreenNodeBuilder {
    /// Creates new builder.
    #[inline]
    pub fn new() -> Self {
        GreenNodeBuilder { parents: Vec::new(), children: Vec::new() }
    }
    /// Adds new token to the current branch.
    #[inline]
    pub fn token(&mut self, kind: SyntaxKind, text: SmolStr) {
        let token = GreenToken { kind, text };
        self.children.push(token.into());
    }
    /// Start new node and make it current.
    #[inline]
    pub fn start_node(&mut self, kind: SyntaxKind) {
        let len = self.children.len();
        self.parents.push((kind, len));
    }
    /// Finish current branch and restore previous
    /// branch as current.
    #[inline]
    pub fn finish_node(&mut self) {
        let (kind, first_child) = self.parents.pop().unwrap();
        let children: Vec<_> = self.children.drain(first_child..).collect();
        let node = GreenNode::new(kind, children.into_boxed_slice());
        self.children.push(node.into());
    }
    /// Prepare for maybe wrapping the next node.
    /// The way wrapping works is that you first of all get a checkpoint,
    /// then you place all tokens you want to wrap, and then *maybe* call start_internal_at.
    /// Example:
    /// ```rust,ignore
    /// let checkpoint = builder.checkpoint();
    /// self.parse_expr();
    /// if self.peek() == Some(Token::Plus) {
    ///   // 1 + 2 = Add(1, 2)
    ///   builder.start_internal_at(checkpoint, Token::Operation);
    ///   self.parse_expr();
    ///   builder.finish_internal();
    /// }
    /// ```
    #[inline]
    pub fn checkpoint(&self) -> Checkpoint {
        Checkpoint(self.children.len())
    }
    /// Wrap the previous branch marked by `checkpoint` in a new branch and
    /// make it current.
    #[inline]
    pub fn start_node_at(&mut self, checkpoint: Checkpoint, kind: SyntaxKind) {
        let Checkpoint(checkpoint) = checkpoint;
        assert!(
            checkpoint <= self.children.len(),
            "checkpoint no longer valid, was finish_internal called early?"
        );

        if let Some(&(_, first_child)) = self.parents.last() {
            assert!(
                checkpoint >= first_child,
                "checkpoint no longer valid, was an unmatched start_internal called?"
            );
        }

        self.parents.push((kind, checkpoint));
    }
    /// Complete tree building. Make sure that
    /// `start_internal` and `finish_internal` calls
    /// are paired!
    #[inline]
    pub fn finish(mut self) -> GreenNode {
        assert_eq!(self.children.len(), 1);
        match self.children.pop().unwrap() {
            GreenElement::Node(node) => node,
            GreenElement::Token(_) => panic!(),
        }
    }
}