1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
use std::{mem::size_of, sync::Arc};

use crate::{SmolStr, TextUnit, Types};

/// `GreenNode` is an immutable syntax tree,
/// which is cheap to update. It lacks parent
/// pointers and information about offsets.
#[derive(Debug)]
pub struct GreenNode<T: Types>(GreenNodeImpl<T>);

impl<T: Types> Clone for GreenNode<T> {
    fn clone(&self) -> GreenNode<T> {
        GreenNode(match &self.0 {
            GreenNodeImpl::Leaf { kind, text } => GreenNodeImpl::Leaf {
                kind: *kind,
                text: text.clone(),
            },
            GreenNodeImpl::Branch(branch) => GreenNodeImpl::Branch(Arc::clone(branch)),
        })
    }
}

/// A checkpoint for maybe wrapping a node. See `GreenNodeBuilder::checkpoint` for details.
#[derive(Clone, Copy, Debug)]
pub struct Checkpoint(usize);

#[derive(Debug)]
enum GreenNodeImpl<T: Types> {
    Leaf { kind: T::Kind, text: SmolStr },
    Branch(Arc<GreenBranch<T>>),
}

/// A builder for a green tree.
#[derive(Debug)]
pub struct GreenNodeBuilder<T: Types> {
    parents: Vec<(T::Kind, usize)>,
    children: Vec<GreenNode<T>>,
}

impl<T: Types> GreenNodeBuilder<T> {
    /// Creates new builder.
    pub fn new() -> Self {
        GreenNodeBuilder {
            parents: Vec::new(),
            children: Vec::new(),
        }
    }
    /// Adds new leaf to the current branch.
    pub fn leaf(&mut self, kind: T::Kind, text: SmolStr) {
        self.children.push(GreenNode::new_leaf(kind, text));
    }
    /// Start new branch and make it current.
    pub fn start_internal(&mut self, kind: T::Kind) {
        let len = self.children.len();
        self.parents.push((kind, len));
    }
    /// Finish current branch and restore previous
    /// branch as current.
    pub fn finish_internal(&mut self) {
        let (kind, first_child) = self.parents.pop().unwrap();
        let children: Vec<_> = self.children.drain(first_child..).collect();
        self.children
            .push(GreenNode::new_branch(kind, children.into_boxed_slice()));
    }
    /// Prepare for maybe wrapping the next node.
    /// The way wrapping works is that you first of all get a checkpoint,
    /// then you place all tokens you want to wrap, and then *maybe* call start_internal_at.
    /// Example:
    /// ```rust,ignore
    /// let checkpoint = builder.checkpoint();
    /// self.parse_expr();
    /// if self.peek() == Some(Token::Plus) {
    ///   // 1 + 2 = Add(1, 2)
    ///   builder.start_internal_at(checkpoint, Token::Operation);
    ///   self.parse_expr();
    ///   builder.finish_internal();
    /// }
    /// ```
    pub fn checkpoint(&self) -> Checkpoint {
        Checkpoint(self.children.len())
    }
    /// Wrap the previous branch marked by `checkpoint` in a new branch and
    /// make it current.
    pub fn start_internal_at(&mut self, checkpoint: Checkpoint, kind: T::Kind) {
        let Checkpoint(checkpoint) = checkpoint;
        assert!(
            checkpoint <= self.children.len(),
            "checkpoint no longer valid, was finish_internal called early?"
        );

        if let Some(&(_, first_child)) = self.parents.last() {
            assert!(
                checkpoint >= first_child,
                "checkpoint no longer valid, was an unmatched start_internal called?"
            );
        }

        self.parents.push((kind, checkpoint));
    }
    /// Complete tree building. Make sure that
    /// `start_internal` and `finish_internal` calls
    /// are paired!
    pub fn finish(mut self) -> GreenNode<T> {
        assert_eq!(self.children.len(), 1);
        self.children.pop().unwrap()
    }
}

impl<T: Types> GreenNode<T> {
    /// Creates new leaf green node.
    pub fn new_leaf(kind: T::Kind, text: SmolStr) -> GreenNode<T> {
        GreenNode(GreenNodeImpl::Leaf { kind, text })
    }
    /// Creates new branch green node.
    pub fn new_branch(kind: T::Kind, children: Box<[GreenNode<T>]>) -> GreenNode<T> {
        GreenNode(GreenNodeImpl::Branch(Arc::new(GreenBranch::new(
            kind, children,
        ))))
    }
    /// Kind of this node.
    pub fn kind(&self) -> T::Kind {
        match &self.0 {
            GreenNodeImpl::Leaf { kind, .. } => *kind,
            GreenNodeImpl::Branch(b) => b.kind(),
        }
    }
    /// Length of the text, covered by this node.
    pub fn text_len(&self) -> TextUnit {
        match &self.0 {
            GreenNodeImpl::Leaf { text, .. } => TextUnit::from(text.len() as u32),
            GreenNodeImpl::Branch(b) => b.text_len(),
        }
    }
    /// Children of this node, empty for leaves.
    pub fn children(&self) -> &[GreenNode<T>] {
        match &self.0 {
            GreenNodeImpl::Leaf { .. } => &[],
            GreenNodeImpl::Branch(b) => b.children(),
        }
    }
    /// Text of this node, if it is a leaf, and
    /// None otherwise.
    pub fn leaf_text(&self) -> Option<&SmolStr> {
        match &self.0 {
            GreenNodeImpl::Leaf { text, .. } => Some(text),
            GreenNodeImpl::Branch(_) => None,
        }
    }
    /// Number of memory bytes of occupied by subtree rooted at `self`.
    pub fn memory_size_of_subtree(&self) -> usize {
        let mut res = size_of::<Self>();
        match &self.0 {
            GreenNodeImpl::Leaf { text, .. } => {
                if text.len() > 22 {
                    res += text.len();
                }
            }
            GreenNodeImpl::Branch(branch) => {
                res += size_of::<GreenBranch<T>>()
                    + 2 * size_of::<usize>()
                    + branch
                        .children
                        .iter()
                        .map(|it| it.memory_size_of_subtree())
                        .sum::<usize>();
            }
        }
        res
    }
}

#[derive(Debug)]
struct GreenBranch<T: Types> {
    text_len: TextUnit,
    kind: T::Kind,
    children: Box<[GreenNode<T>]>,
}

impl<T: Types> GreenBranch<T> {
    fn new(kind: T::Kind, children: Box<[GreenNode<T>]>) -> GreenBranch<T> {
        let text_len = children.iter().map(|x| x.text_len()).sum::<TextUnit>();
        GreenBranch {
            text_len,
            kind,
            children,
        }
    }
    fn kind(&self) -> T::Kind {
        self.kind
    }
    fn text_len(&self) -> TextUnit {
        self.text_len
    }
    fn children(&self) -> &[GreenNode<T>] {
        &*self.children
    }
}