1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
use std::hash::{BuildHasherDefault, Hash, Hasher};

use hashbrown::hash_map::RawEntryMut;
use rustc_hash::FxHasher;

use crate::{
    cow_mut::CowMut,
    green::{GreenElement, GreenNode, GreenToken, SyntaxKind},
    NodeOrToken,
};

type HashMap<K, V> = hashbrown::HashMap<K, V, BuildHasherDefault<FxHasher>>;

#[derive(Default, Debug)]
pub struct NodeCache {
    nodes: HashMap<GreenNode, ()>,
    tokens: HashMap<GreenToken, ()>,
}

impl NodeCache {
    fn node(
        &mut self,
        kind: SyntaxKind,
        children: &mut Vec<(u64, GreenElement)>,
        first_child: usize,
    ) -> (u64, GreenNode) {
        let build_node = move |children: &mut Vec<(u64, GreenElement)>| {
            GreenNode::new(kind, children.drain(first_child..).map(|(_, it)| it))
        };
        let children_ref = &children[first_child..];
        if children_ref.len() > 3 {
            let node = build_node(children);
            return (0, node);
        }

        // Manually compute the hash to avoid repeatedly hashing subtrees.
        let hash = {
            let mut h = FxHasher::default();
            kind.hash(&mut h);
            for &(hash, _) in children_ref {
                if hash == 0 {
                    let node = build_node(children);
                    return (0, node);
                }
                hash.hash(&mut h);
            }
            h.finish()
        };

        // Green nodes are fully immutable, so it's ok to deduplicate them.
        // This is the same optimization that Roslyn does
        // https://github.com/KirillOsenkov/Bliki/wiki/Roslyn-Immutable-Trees
        //
        // For example, all `#[inline]` in this file share the same green node!
        // For `libsyntax/parse/parser.rs`, measurements show that deduping saves
        // 17% of the memory for green nodes!
        let entry = self.nodes.raw_entry_mut().from_hash(hash, |node| {
            node.kind() == kind
                && node.children().len() == children_ref.len()
                && node.children().eq(children_ref.iter().map(|(_, it)| it.as_deref()))
        });

        let node = match entry {
            RawEntryMut::Occupied(entry) => {
                drop(children.drain(first_child..));
                entry.key().clone()
            }
            RawEntryMut::Vacant(entry) => {
                let node = build_node(children);
                entry.insert_hashed_nocheck(hash, node.clone(), ());
                node
            }
        };

        (hash, node)
    }

    fn token(&mut self, kind: SyntaxKind, text: &str) -> (u64, GreenToken) {
        let hash = {
            let mut h = FxHasher::default();
            kind.hash(&mut h);
            text.hash(&mut h);
            h.finish()
        };
        let entry = self
            .tokens
            .raw_entry_mut()
            .from_hash(hash, |token| token.kind() == kind && token.text() == text);

        let token = match entry {
            RawEntryMut::Occupied(entry) => entry.key().clone(),
            RawEntryMut::Vacant(entry) => {
                let token = GreenToken::new(kind, text);
                entry.insert_hashed_nocheck(hash, token.clone(), ());
                token
            }
        };
        (hash, token)
    }
}

/// A checkpoint for maybe wrapping a node. See `GreenNodeBuilder::checkpoint` for details.
#[derive(Clone, Copy, Debug)]
pub struct Checkpoint(usize);

/// A builder for a green tree.
#[derive(Default, Debug)]
pub struct GreenNodeBuilder<'cache> {
    cache: CowMut<'cache, NodeCache>,
    parents: Vec<(SyntaxKind, usize)>,
    children: Vec<(u64, GreenElement)>,
}

impl GreenNodeBuilder<'_> {
    /// Creates new builder.
    pub fn new() -> GreenNodeBuilder<'static> {
        GreenNodeBuilder::default()
    }

    /// Reusing `NodeCache` between different `GreenNodeBuilder`s saves memory.
    /// It allows to structurally share underlying trees.
    pub fn with_cache(cache: &mut NodeCache) -> GreenNodeBuilder<'_> {
        GreenNodeBuilder {
            cache: CowMut::Borrowed(cache),
            parents: Vec::new(),
            children: Vec::new(),
        }
    }

    /// Adds new token to the current branch.
    #[inline]
    pub fn token(&mut self, kind: SyntaxKind, text: &str) {
        let (hash, token) = self.cache.token(kind, text);
        self.children.push((hash, token.into()));
    }

    /// Start new node and make it current.
    #[inline]
    pub fn start_node(&mut self, kind: SyntaxKind) {
        let len = self.children.len();
        self.parents.push((kind, len));
    }

    /// Finish current branch and restore previous
    /// branch as current.
    #[inline]
    pub fn finish_node(&mut self) {
        let (kind, first_child) = self.parents.pop().unwrap();
        let (hash, node) = self.cache.node(kind, &mut self.children, first_child);
        self.children.push((hash, node.into()));
    }

    /// Prepare for maybe wrapping the next node.
    /// The way wrapping works is that you first of all get a checkpoint,
    /// then you place all tokens you want to wrap, and then *maybe* call
    /// `start_node_at`.
    /// Example:
    /// ```rust
    /// # use rowan::{GreenNodeBuilder, SyntaxKind};
    /// # const PLUS: SyntaxKind = SyntaxKind(0);
    /// # const OPERATION: SyntaxKind = SyntaxKind(1);
    /// # struct Parser;
    /// # impl Parser {
    /// #     fn peek(&self) -> Option<SyntaxKind> { None }
    /// #     fn parse_expr(&mut self) {}
    /// # }
    /// # let mut builder = GreenNodeBuilder::new();
    /// # let mut parser = Parser;
    /// let checkpoint = builder.checkpoint();
    /// parser.parse_expr();
    /// if parser.peek() == Some(PLUS) {
    ///   // 1 + 2 = Add(1, 2)
    ///   builder.start_node_at(checkpoint, OPERATION);
    ///   parser.parse_expr();
    ///   builder.finish_node();
    /// }
    /// ```
    #[inline]
    pub fn checkpoint(&self) -> Checkpoint {
        Checkpoint(self.children.len())
    }

    /// Wrap the previous branch marked by `checkpoint` in a new branch and
    /// make it current.
    #[inline]
    pub fn start_node_at(&mut self, checkpoint: Checkpoint, kind: SyntaxKind) {
        let Checkpoint(checkpoint) = checkpoint;
        assert!(
            checkpoint <= self.children.len(),
            "checkpoint no longer valid, was finish_node called early?"
        );

        if let Some(&(_, first_child)) = self.parents.last() {
            assert!(
                checkpoint >= first_child,
                "checkpoint no longer valid, was an unmatched start_node_at called?"
            );
        }

        self.parents.push((kind, checkpoint));
    }

    /// Complete tree building. Make sure that
    /// `start_node_at` and `finish_node` calls
    /// are paired!
    #[inline]
    pub fn finish(mut self) -> GreenNode {
        assert_eq!(self.children.len(), 1);
        match self.children.pop().unwrap().1 {
            NodeOrToken::Node(node) => node,
            NodeOrToken::Token(_) => panic!(),
        }
    }
}