1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
use std::{
    fmt,
    hash::{Hash, Hasher},
    ops::Range,
    sync::Arc,
};

use {
    red::RedNode,
    roots::{OwnedRoot, RedPtr, RefRoot, SyntaxRoot, TreeRoot},
    GreenNode, SmolStr, TextRange, Types,
};

/// An immutable lazy constructed syntax tree with
/// offsets and parent pointers.
///
/// The design is close to
/// https://github.com/apple/swift/tree/bc3189a2d265bf7728ea0cfeb55f032bfe5beaf1/lib/Syntax
///
/// `SyntaxNode` exists in two flavors:
///   * owned (R = OwnedRoot<T>)
///   * borrowed (R = RefRoot<'a, T>)
///
/// Borrowed `SyntaxNode` is `Copy`, but is parametrized over a lifetime,
/// with a corresponding ergonomics hit.
///
/// Owned `SyntaxNode` is `Clone` (using `Arc::clone` under the hood) and
/// is not parametrized over a lifetime. Note that becaue of the parent
/// links `SyntaxNode` keeps all of its ancestors alive, and not only descendents,
/// so keep an eye on memory leaks.
///
/// Methods like `parent` or `children` preserv the flavor (borrowed or owned)
/// of nodes, but you can switch between them at any time using `.borrowed()`
/// and `.owned()` methods. As a rule of thumb, when *processing* nodes, use
/// borowed version to avoid excessive Arc trafic, and, when *storing* nodes
/// in data structures, use owned variant, to avoid dealing with lifetimes.
///
/// `SyntaxNode` have object identity equality and hash semantics.
pub struct SyntaxNode<T: Types, R: TreeRoot<T>> {
    pub(crate) root: R,
    // Guaranteed to not dangle, because `root` holds a
    // strong reference to red's ancestor
    red: RedPtr<T>,
}

// unsafe impl<T: Types, R: TreeRoot<T>> Send for SyntaxNode<T, R> {}
// unsafe impl<T: Types, R: TreeRoot<T>> Sync for SyntaxNode<T, R> {}

impl<T, R1, R2> PartialEq<SyntaxNode<T, R1>> for SyntaxNode<T, R2>
where
    T: Types,
    R1: TreeRoot<T>,
    R2: TreeRoot<T>,
{
    fn eq(&self, other: &SyntaxNode<T, R1>) -> bool {
        self.red == other.red
    }
}

impl<T: Types, R: TreeRoot<T>> Eq for SyntaxNode<T, R> {}
impl<T: Types, R: TreeRoot<T>> Hash for SyntaxNode<T, R> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.red.hash(state)
    }
}

impl<T: Types, R: TreeRoot<T> + Clone> Clone for SyntaxNode<T, R> {
    fn clone(&self) -> SyntaxNode<T, R> {
        SyntaxNode {
            root: self.root.clone(),
            red: self.red,
        }
    }
}

impl<T: Types, R: TreeRoot<T> + Copy> Copy for SyntaxNode<T, R> {}

impl<T: Types> SyntaxNode<T, OwnedRoot<T>> {
    /// Creates a new `SyntaxNode`.
    pub fn new(green: GreenNode<T>, data: T::RootData) -> Self {
        let root = SyntaxRoot {
            red: RedNode::new_root(green),
            data,
        };
        let root = OwnedRoot(Arc::new(root));
        let red = RedPtr::new(&root.syntax_root().red);
        SyntaxNode { root, red }
    }
}

impl<'a, T: Types> SyntaxNode<T, RefRoot<'a, T>> {
    /// Text of this node if it is a leaf.
    // Only for `RefRoot` to extend lifetime to `'a`.
    pub fn leaf_text(&self) -> Option<&'a SmolStr> {
        let red = unsafe { self.red.get(self.root.syntax_root()) };
        red.green().leaf_text()
    }
}

impl<T: Types, R: TreeRoot<T>> SyntaxNode<T, R> {
    /// Switch this node to borrowed flavor.
    pub fn borrowed<'a>(&'a self) -> SyntaxNode<T, RefRoot<'a, T>> {
        SyntaxNode {
            root: self.root.borrowed(),
            red: self.red,
        }
    }
    /// Switch this node to owned flavor.
    pub fn owned(&self) -> SyntaxNode<T, OwnedRoot<T>> {
        SyntaxNode {
            root: self.root.owned(),
            red: self.red,
        }
    }
    /// Get root data.
    pub fn root_data(&self) -> &T::RootData {
        &self.root.syntax_root().data
    }
    /// Get kind of this node.
    pub fn kind(&self) -> T::Kind {
        self.red().green().kind()
    }
    /// Get text range, covered by this node.
    pub fn range(&self) -> TextRange {
        let red = self.red();
        TextRange::offset_len(red.start_offset(), red.green().text_len())
    }
    /// Get the parent node.
    pub fn parent(&self) -> Option<SyntaxNode<T, R>> {
        let parent = self.red().parent()?;
        Some(SyntaxNode {
            root: self.root.clone(),
            red: parent,
        })
    }
    /// Get iterator over children.
    pub fn children(&self) -> SyntaxNodeChildren<T, R> {
        SyntaxNodeChildren {
            parent: self.clone(),
            iter: (0..self.red().n_children()),
        }
    }
    /// Get first child.
    pub fn first_child(&self) -> Option<SyntaxNode<T, R>> {
        let red = self.red().get_child(0)?;
        Some(SyntaxNode {
            root: self.root.clone(),
            red,
        })
    }
    /// Get last child.
    pub fn last_child(&self) -> Option<SyntaxNode<T, R>> {
        let n = self.red().n_children();
        let n = n.checked_sub(1)?;
        let red = self.red().get_child(n)?;
        Some(SyntaxNode {
            root: self.root.clone(),
            red,
        })
    }
    /// Get next sibling.
    pub fn next_sibling(&self) -> Option<SyntaxNode<T, R>> {
        let red = self.red();
        let parent = self.parent()?;
        let next_sibling_idx = red.index_in_parent()? + 1;
        let sibling_red = parent.red().get_child(next_sibling_idx)?;
        Some(SyntaxNode {
            root: self.root.clone(),
            red: sibling_red,
        })
    }
    /// Get previous sibling.
    pub fn prev_sibling(&self) -> Option<SyntaxNode<T, R>> {
        let red = self.red();
        let parent = self.parent()?;
        let prev_sibling_idx = red.index_in_parent()?.checked_sub(1)?;
        let sibling_red = parent.red().get_child(prev_sibling_idx)?;
        Some(SyntaxNode {
            root: self.root.clone(),
            red: sibling_red,
        })
    }
    /// Returns `true` if this node is a leaf node.
    pub fn is_leaf(&self) -> bool {
        self.red().green().leaf_text().is_some()
    }
    /// Returns a green tree, equal to the green tree this node
    /// belongs two, except with this node substitute. The complexity
    /// of operation is proportional to the depth of the tree
    /// TODO: naming is unfortunate, the return value is not *current*
    /// node, it is the new root node.
    pub fn replace_with(&self, green: GreenNode<T>) -> GreenNode<T> {
        assert_eq!(self.kind(), green.kind());
        match self.parent() {
            None => green,
            Some(parent) => {
                let children: Vec<_> = parent
                    .children()
                    .map(|child| {
                        if child == *self {
                            green.clone()
                        } else {
                            child.red().green().clone()
                        }
                    }).collect();
                let new_parent = GreenNode::new_branch(parent.kind(), children.into_boxed_slice());
                parent.replace_with(new_parent)
            }
        }
    }
    fn red(&self) -> &RedNode<T> {
        unsafe { self.red.get(self.root.syntax_root()) }
    }
}

impl<T: Types, R: TreeRoot<T>> fmt::Debug for SyntaxNode<T, R> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "{:?}@{:?}", self.kind(), self.range())
    }
}

/// Iterator over node's children.
#[derive(Debug)]
pub struct SyntaxNodeChildren<T: Types, R: TreeRoot<T>> {
    parent: SyntaxNode<T, R>,
    iter: Range<usize>,
}

impl<T: Types, R: TreeRoot<T>> Iterator for SyntaxNodeChildren<T, R> {
    type Item = SyntaxNode<T, R>;

    fn next(&mut self) -> Option<SyntaxNode<T, R>> {
        self.iter.next().map(|i| {
            let red = self.parent.red();
            SyntaxNode {
                root: self.parent.root.clone(),
                red: red.get_child(i).unwrap(),
            }
        })
    }
}