1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
// Copyright 2015 MaidSafe.net limited.
//
// This SAFE Network Software is licensed to you under (1) the MaidSafe.net Commercial License,
// version 1.0 or later, or (2) The General Public License (GPL), version 3, depending on which
// licence you accepted on initial access to the Software (the "Licences").
//
// By contributing code to the SAFE Network Software, or to this project generally, you agree to be
// bound by the terms of the MaidSafe Contributor Agreement, version 1.0.  This, along with the
// Licenses can be found in the root directory of this project at LICENSE, COPYING and CONTRIBUTOR.
//
// Unless required by applicable law or agreed to in writing, the SAFE Network Software distributed
// under the GPL Licence is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
//
// Please review the Licences for the specific language governing permissions and limitations
// relating to use of the SAFE Network Software.

use rand;
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
use rustc_serialize::hex::{FromHex, FromHexError, ToHex};
use std::cmp::Ordering;
use std::{fmt, ops};
use kademlia_routing_table::Xorable;


/// Create a 32-byte array of `u8` from a 32-byte reference to a `u8` slice.
pub fn slice_as_u8_32_array(slice: &[u8]) -> [u8; 32] {
    let mut arr = [0u8; 32];
    arr.clone_from_slice(slice);
    arr
}

/// Constant byte length of `XorName`.
pub const XOR_NAME_LEN: usize = 32;

/// Constant bit length of `XorName`.
pub const XOR_NAME_BITS: usize = XOR_NAME_LEN * 8;

/// Errors that can occur when decoding a `XorName` from a string.
#[derive(Debug)]
pub enum XorNameFromHexError {
    /// The given invalid hex character occurred at the given position.
    InvalidCharacter(char, usize),
    /// The hex string did not encode `XOR_NAME_LEN` bytes.
    WrongLength,
}


/// A [`XOR_NAME_BITS`](constant.XOR_NAME_BITS.html)-bit number, viewed as a point in XOR space.
///
/// This wraps an array of [`XOR_NAME_LEN`](constant.XOR_NAME_LEN.html) bytes, i. e. a number
/// between 0 and 2<sup>`XOR_NAME_BITS`</sup> - 1.
///
/// XOR space is the space of these numbers, with the [XOR metric][1] as a notion of distance,
/// i. e. the points with IDs `x` and `y` are considered to have distance `x xor y`.
///
/// [1]: https://en.wikipedia.org/wiki/Kademlia#System_details
#[derive(Eq, Copy, Clone, Hash, Ord, PartialEq, PartialOrd)]
pub struct XorName(pub [u8; XOR_NAME_LEN]);

impl XorName {
    /// Hex-encode the `XorName` as a `String`.
    pub fn to_hex(&self) -> String {
        self.0.to_hex()
    }

    /// Returns a copy of `self`, with the `index`-th bit flipped.
    ///
    /// If the parameter does not address one of the name's bits, i. e. if it does not satisfy
    /// `index < XOR_NAME_BITS`, the result will be equal to the argument.
    pub fn with_flipped_bit(&self, index: usize) -> XorName {
        if index >= XOR_NAME_BITS {
            return *self;
        }
        let &XorName(mut bytes) = self;
        bytes[index / 8] ^= 1 << (7 - index % 8);
        XorName(bytes)
    }

    /// Returns the number of bits in which `self` differs from `other`.
    pub fn count_differing_bits(&self, other: &XorName) -> u32 {
        self.0.iter().zip(other.0.iter()).fold(0, |acc, (a, b)| acc + (a ^ b).count_ones())
    }

    /// Hex-decode a `XorName` from a `&str`.
    pub fn from_hex(s: &str) -> Result<XorName, XorNameFromHexError> {
        let data = match s.from_hex() {
            Ok(v) => v,
            Err(FromHexError::InvalidHexCharacter(c, p)) => {
                return Err(XorNameFromHexError::InvalidCharacter(c, p))
            }
            Err(FromHexError::InvalidHexLength) => return Err(XorNameFromHexError::WrongLength),
        };
        if data.len() != XOR_NAME_LEN {
            return Err(XorNameFromHexError::WrongLength);
        }
        Ok(XorName(slice_as_u8_32_array(&data[..])))
    }

    /// Returns the number of leading bits in which `self` and `name` agree.
    ///
    /// Here, "leading bits" means the most significant bits. E. g. for `10101...` and `10011...`,
    /// that value will be 2, as their common prefix `10` has length 2 and the third bit is the
    /// first one in which they disagree.
    ///
    /// Equivalently, this is `XOR_NAME_BITS - bucket_distance`, where `bucket_distance` is the
    /// length of the remainders after the common prefix is removed from the IDs of `self` and
    /// `name`.
    ///
    /// The bucket distance is the magnitude of the XOR distance. More precisely, if `d > 0` is the
    /// XOR distance between `self` and `name`, the bucket distance equals `floor(log2(d))`, i. e.
    /// a bucket distance of `n` means that 2<sup>`n - 1`</sup> `<= d <` 2<sup>`n`</sup>.
    pub fn bucket_index(&self, other: &XorName) -> usize {
        self.0.bucket_index(&other.0)
    }

    /// Compares `lhs` and `rhs` with respect to their distance from `self`.
    pub fn cmp_distance(&self, lhs: &XorName, rhs: &XorName) -> Ordering {
        self.0.cmp_distance(&lhs.0, &rhs.0)
    }

    /// Returns `true` if the `i`-th bit of `name` is different from the `i`-th bit of `self`.
    pub fn differs_in_bit(&self, name: &XorName, i: usize) -> bool {
        self.0.differs_in_bit(&name.0, i)
    }

    /// Returns true if `lhs` is closer to `self` than `rhs`.
    ///
    /// Equivalently, this returns `true` if in the most significant bit where `lhs` and `rhs`
    /// disagree, `lhs` agrees with `self`.
    pub fn closer(&self, lhs: &XorName, rhs: &XorName) -> bool {
        self.cmp_distance(lhs, rhs) == Ordering::Less
    }

    /// Returns true if `lhs` is closer to `self` than `rhs`, or `lhs == rhs`.
    pub fn closer_or_equal(&self, lhs: &XorName, rhs: &XorName) -> bool {
        self.cmp_distance(lhs, rhs) != Ordering::Greater
    }

    // Private function exposed in fmt Debug {:?} and Display {} traits.
    fn get_debug_id(&self) -> String {
        format!("{:02x}{:02x}{:02x}..", self.0[0], self.0[1], self.0[2])
    }
}

impl Xorable for XorName {
    fn bucket_index(&self, other: &XorName) -> usize {
        self.bucket_index(other)
    }

    fn cmp_distance(&self, lhs: &XorName, rhs: &XorName) -> Ordering {
        self.cmp_distance(lhs, rhs)
    }

    fn differs_in_bit(&self, name: &XorName, i: usize) -> bool {
        self.differs_in_bit(name, i)
    }
}

impl fmt::Debug for XorName {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.get_debug_id())
    }
}

impl fmt::Display for XorName {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.get_debug_id())
    }
}

impl rand::Rand for XorName {
    fn rand<R: rand::Rng>(rng: &mut R) -> XorName {
        let mut ret = [0u8; XOR_NAME_LEN];
        for r in ret[..].iter_mut() {
            *r = <u8 as rand::Rand>::rand(rng);
        }
        XorName(ret)
    }
}

impl ops::Index<ops::Range<usize>> for XorName {
    type Output = [u8];
    fn index(&self, index: ops::Range<usize>) -> &[u8] {
        let &XorName(ref b) = self;
        b.index(index)
    }
}
impl ops::Index<ops::RangeTo<usize>> for XorName {
    type Output = [u8];
    fn index(&self, index: ops::RangeTo<usize>) -> &[u8] {
        let &XorName(ref b) = self;
        b.index(index)
    }
}

impl ops::Index<ops::RangeFrom<usize>> for XorName {
    type Output = [u8];
    fn index(&self, index: ops::RangeFrom<usize>) -> &[u8] {
        let &XorName(ref b) = self;
        b.index(index)
    }
}

impl ops::Index<ops::RangeFull> for XorName {
    type Output = [u8];
    fn index(&self, index: ops::RangeFull) -> &[u8] {
        let &XorName(ref b) = self;
        b.index(index)
    }
}

impl Encodable for XorName {
    fn encode<E: Encoder>(&self, encoder: &mut E) -> Result<(), E::Error> {
        encoder.emit_seq(XOR_NAME_LEN, |encoder| {
            for (i, e) in self[..].iter().enumerate() {
                try!(encoder.emit_seq_elt(i, |encoder| e.encode(encoder)))
            }
            Ok(())
        })
    }
}

impl Decodable for XorName {
    fn decode<D: Decoder>(decoder: &mut D) -> Result<XorName, D::Error> {
        decoder.read_seq(|decoder, len| {
            if len != XOR_NAME_LEN {
                return Err(decoder.error(&format!("Expecting array of length: {}, but found {}",
                                                  XOR_NAME_LEN,
                                                  len)));
            }
            let mut res = XorName([0; XOR_NAME_LEN]);
            {
                let XorName(ref mut arr) = res;
                for (i, val) in arr.iter_mut().enumerate() {
                    *val = try!(decoder.read_seq_elt(i, |decoder| Decodable::decode(decoder)));
                }
            }
            Ok(res)
        })
    }
}

#[cfg(test)]
mod test {
    use maidsafe_utilities::serialisation::{deserialise, serialise};
    use std::cmp::Ordering;
    use super::*;
    use rand;

    #[test]
    fn serialisation_xor_name() {
        let obj_before: XorName = rand::random();
        let data = unwrap_result!(serialise(&obj_before));
        let obj_after: XorName = unwrap_result!(deserialise(&data));
        assert_eq!(obj_before, obj_after);
    }

    #[test]
    #[cfg_attr(feature="clippy", allow(eq_op))]
    fn xor_name_ord() {
        let type1: XorName = XorName([1u8; XOR_NAME_LEN]);
        let type2: XorName = XorName([2u8; XOR_NAME_LEN]);
        assert!(Ord::cmp(&type1, &type1) == Ordering::Equal);
        assert!(Ord::cmp(&type1, &type2) == Ordering::Less);
        assert!(Ord::cmp(&type2, &type1) == Ordering::Greater);
        assert!(type1 < type2);
        assert!(type1 <= type2);
        assert!(type1 <= type1);
        assert!(type2 > type1);
        assert!(type2 >= type1);
        assert!(type1 >= type1);
        assert!(!(type2 < type1));
        assert!(!(type2 <= type1));
        assert!(!(type1 > type2));
        assert!(!(type1 >= type2));
    }

    #[test]
    fn xor_name_equal_assertion() {
        let type1: XorName = rand::random();
        let type1_clone = type1;
        let type2: XorName = rand::random();
        assert_eq!(type1, type1_clone);
        assert!(type1 == type1_clone);
        assert!(!(type1 != type1_clone));
        assert!(type1 != type2);
    }

    #[test]
    fn closeness() {
        let obj0: XorName = rand::random();
        let obj0_clone = obj0;
        let obj1: XorName = rand::random();
        assert!(obj0.closer(&obj0_clone, &obj1));
        assert!(!obj0.closer(&obj1, &obj0_clone));
    }

    #[test]
    fn format_random_nametype() {
        // test for Random XorName
        for _ in 0..5 {
            let my_name: XorName = rand::random();
            let debug_id = my_name.get_debug_id();
            let full_id = my_name.to_hex();
            assert_eq!(debug_id.len(), 8);
            assert_eq!(full_id.len(), 2 * XOR_NAME_LEN);
            assert_eq!(&debug_id[0..6].to_owned(), &full_id[0..6]);
        }
    }

    #[test]
    fn format_fixed_low_char_nametype() {
        // test for fixed low char values in XorName
        let low_char_id = [1u8; XOR_NAME_LEN];
        let my_low_char_name = XorName(low_char_id);
        let debug_id = my_low_char_name.get_debug_id();
        let full_id = my_low_char_name.to_hex();
        assert_eq!(debug_id.len(), 8);
        assert_eq!(full_id.len(), 2 * XOR_NAME_LEN);
        assert_eq!(&debug_id[0..6], &full_id[0..6].to_owned());
    }

    #[test]
    fn with_flipped_bit() {
        let name: XorName = rand::random();
        for i in 0..18 {
            assert_eq!(i, name.bucket_index(&name.with_flipped_bit(i)));
        }
        for i in 0..10 {
            assert_eq!(19 * i, name.bucket_index(&name.with_flipped_bit(19 * i)));
        }
        assert_eq!(name, name.with_flipped_bit(XOR_NAME_BITS));
        assert_eq!(name, name.with_flipped_bit(XOR_NAME_BITS + 1000));
    }

    #[test]
    fn count_differing_bits() {
        let name: XorName = rand::random();
        assert_eq!(0, name.count_differing_bits(&name));
        let one_bit = name.with_flipped_bit(5);
        assert_eq!(1, name.count_differing_bits(&one_bit));
        let two_bits = one_bit.with_flipped_bit(100);
        assert_eq!(2, name.count_differing_bits(&two_bits));
    }
}