1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
//! A Little implementation of the roulette-wheel principle, `RouletteWheel<T>`.
//! https://wikipedia.org/wiki/Fitness_proportionate_selection
//!
//! ![Fitness proportionate selection](https://upload.wikimedia.org/wikipedia/commons/2/2a/Fitness_proportionate_selection_example.png)
//!
//! # Examples usages
//!
//! ```
//! use roulette_wheel::RouletteWheel;
//!
//! fn evaluate(individual: &i32) -> f32 { *individual as f32 } // mmm...!
//!
//! let population: Vec<_> = (1..10).into_iter().collect();
//! let fitnesses: Vec<_> = population.iter().map(|ind| evaluate(ind)).collect();
//!
//! let rw: RouletteWheel<_> = fitnesses.into_iter().zip(population).collect();
//!
//! // let's collect the individuals in the order in which the roulette wheel gives them
//! let individuals: Vec<_> = rw.into_iter().map(|(_, ind)| ind).collect();
//! // rw.select_iter() will not consume the roulette wheel
//! // while rw.into_iter() will !
//!
//! fn crossover(mother: &i32, _father: &i32) -> i32 { mother.clone() } // unimplemented!()
//!
//! // now merge each individual by couples
//! let new_population: Vec<_> = individuals.chunks(2)
//!                                  .filter(|couple| couple.len() == 2)
//!                                  .map(|couple| {
//!                                       let (mother, father) = (couple[0], couple[1]);
//!                                       crossover(&mother, &father)
//!                                       // note: for this example we return only one individual,
//!                                       //       the population will shrink
//!                                       //       .flat_map() can resolve this issue
//!                                   }).collect();
//! ```

extern crate rand;

use std::iter::{FromIterator, Iterator, IntoIterator};
use rand::{Rng, ThreadRng, thread_rng};
use rand::distributions::{Range, IndependentSample};

/// A roulette-wheel container
pub struct RouletteWheel<T> {
    total_fitness: f32,
    fitnesses: Vec<f32>,
    population: Vec<T>
}

impl<T: Clone> Clone for RouletteWheel<T> {
    fn clone(&self) -> RouletteWheel<T> {
        RouletteWheel {
            total_fitness: self.total_fitness,
            fitnesses: self.fitnesses.clone(),
            population: self.population.clone()
        }
    }
}

impl<T> FromIterator<(f32, T)> for RouletteWheel<T> {
    fn from_iter<A>(iter: A) -> Self where A: IntoIterator<Item=(f32, T)> {
        let (fitnesses, population): (Vec<f32>, _) = iter.into_iter().unzip();
        let total_fitness = fitnesses.iter().sum();
        RouletteWheel { total_fitness, fitnesses, population }
    }
}

impl<T> RouletteWheel<T> {
    /// create a new empty random-wheel.
    /// # Example
    ///
    /// ```
    /// use roulette_wheel::RouletteWheel;
    ///
    /// let rw = RouletteWheel::<u8>::new();
    /// ```
    pub fn new() -> RouletteWheel<T> {
        RouletteWheel {
            total_fitness: 0.0,
            fitnesses: Vec::new(),
            population: Vec::new()
        }
    }

    /// Creates an empty RouletteWheel with space for at least n elements.
    /// # Example
    ///
    /// ```
    /// use roulette_wheel::RouletteWheel;
    ///
    /// let rw = RouletteWheel::<u8>::with_capacity(15);
    ///
    /// assert_eq!(rw.len(), 0);
    /// ```
    pub fn with_capacity(cap: usize) -> RouletteWheel<T> {
        RouletteWheel {
            total_fitness: 0.0,
            fitnesses: Vec::with_capacity(cap),
            population: Vec::with_capacity(cap)
        }
    }

    /// Reserves capacity for at least `additional` more elements to be inserted.
    /// The collection may reserve more space to avoid frequent reallocations.
    /// # Example
    ///
    /// ```
    /// use roulette_wheel::RouletteWheel;
    ///
    /// let mut rw = RouletteWheel::<u8>::new();
    /// rw.reserve(20);
    ///
    /// assert_eq!(rw.len(), 0);
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        self.fitnesses.reserve(additional);
        self.population.reserve(additional);
    }

    /// Returns the number of elements in the wheel.
    /// # Example
    ///
    /// ```
    /// use roulette_wheel::RouletteWheel;
    ///
    /// let rw: RouletteWheel<_> = [(0.1, 10), (0.2, 15), (0.5, 20)].iter().cloned().collect();
    ///
    /// assert_eq!(rw.len(), 3);
    /// ```
    pub fn len(&self) -> usize {
        self.population.len()
    }

    /// Returns `true` if empty else return `false`.
    /// # Example
    ///
    /// ```
    /// use roulette_wheel::RouletteWheel;
    ///
    /// let empty_rw = RouletteWheel::<u8>::new();
    ///
    /// assert_eq!(empty_rw.is_empty(), true);
    ///
    /// let non_empty_rw: RouletteWheel<_> = [(0.1, 10), (0.2, 15), (0.5, 20)].iter().cloned().collect();
    ///
    /// assert_eq!(non_empty_rw.is_empty(), false);
    /// ```
    pub fn is_empty(&self) -> bool {
        self.population.is_empty()
    }

    /// Remove all elements in this wheel.
    /// # Example
    ///
    /// ```
    /// use roulette_wheel::RouletteWheel;
    ///
    /// let mut rw: RouletteWheel<_> = [(0.1, 10), (0.2, 15), (0.5, 20)].iter().cloned().collect();
    ///
    /// assert_eq!(rw.len(), 3);
    ///
    /// rw.clear();
    ///
    /// assert_eq!(rw.len(), 0);
    /// ```
    pub fn clear(&mut self) {
        self.fitnesses.clear();
        self.population.clear();
    }

    /// Add an element associated with a probability.
    ///
    /// # Panics
    ///
    /// This function might panic if the fitness is less than zero
    /// or if the total fitness gives a non-finite fitness (`Inf`).
    ///
    /// # Example
    ///
    /// ```
    /// use roulette_wheel::RouletteWheel;
    ///
    /// let mut rw = RouletteWheel::new();
    ///
    /// rw.push(1.0, 'r');
    /// rw.push(1.0, 'c');
    /// rw.push(1.0, 'a');
    ///
    /// assert_eq!(rw.len(), 3);
    /// ```
    pub fn push(&mut self, fitness: f32, individual: T) {
        assert!(fitness >= 0.0, "Can't push the less than zero fitness: {:?}", fitness);
        assert!((self.total_fitness + fitness).is_finite(), "Fitnesses sum reached a non-finite value!");
        unsafe { self.unchecked_push(fitness, individual) }
    }

    /// Add an element associated with a probability.
    /// This unsafe function doesn't check for total fitness overflow
    /// nether fitness positivity.
    /// # Example
    ///
    /// ```
    /// use roulette_wheel::RouletteWheel;
    ///
    /// let mut rw = RouletteWheel::new();
    ///
    /// unsafe { rw.unchecked_push(1.0, 'r') };
    /// unsafe { rw.unchecked_push(1.0, 'c') };
    /// unsafe { rw.unchecked_push(1.0, 'a') };
    ///
    /// assert_eq!(rw.len(), 3);
    /// ```
    pub unsafe fn unchecked_push(&mut self, fitness: f32, individual: T) {
        self.total_fitness += fitness;
        self.fitnesses.push(fitness);
        self.population.push(individual);
    }

    /// Returns the sum of all individual fitnesses.
    /// # Example
    ///
    /// ```
    /// use roulette_wheel::RouletteWheel;
    ///
    /// let mut rw = RouletteWheel::new();
    ///
    /// rw.push(3.0, 'r');
    /// rw.push(2.0, 'c');
    /// rw.push(1.5, 'a');
    ///
    /// assert_eq!(rw.total_fitness(), 6.5);
    /// ```
    pub fn total_fitness(&self) -> f32 {
        self.total_fitness
    }

    /// Returns an iterator over the RouletteWheel.
    ///
    /// # Examples
    ///
    /// ``` ignore
    /// use roulette_wheel::RouletteWheel;
    ///
    /// let rw: RouletteWheel<_> = [(0.1, 10), (0.2, 15), (0.5, 20)].iter().cloned().collect();
    /// let mut iterator = rw.select_iter();
    ///
    /// assert_eq!(iterator.next(), Some((0.5, &20)));
    /// assert_eq!(iterator.next(), Some((0.1, &10)));
    /// assert_eq!(iterator.next(), Some((0.2, &15)));
    /// assert_eq!(iterator.next(), None);
    /// ```
    pub fn select_iter(&self) -> SelectIter<ThreadRng, T> {
        SelectIter::<ThreadRng, _>::new(&self)
    }
}

/// Immutable RouletteWheel iterator
///
/// This struct is created by the [`select_iter`].
///
/// [`iter`]: struct.RouletteWheel.html#method.select_iter
pub struct SelectIter<'a, R: Rng, T: 'a> {
    distribution_range: Range<f32>,
    rng: R,
    total_fitness: f32,
    fitnesses_ids: Vec<(usize, f32)>,
    roulette_wheel: &'a RouletteWheel<T>
}

impl<'a, R: Rng, T> SelectIter<'a, R, T> {
    pub fn new(roulette_wheel: &'a RouletteWheel<T>) -> SelectIter<'a, ThreadRng, T> {
        SelectIter::from_rng(roulette_wheel, thread_rng())
    }

    pub fn from_rng(roulette_wheel: &'a RouletteWheel<T>, rng: R) -> SelectIter<'a, R, T> {
        SelectIter {
            distribution_range: Range::new(0.0, 1.0),
            rng: rng,
            total_fitness: roulette_wheel.total_fitness,
            fitnesses_ids: roulette_wheel.fitnesses.iter().cloned().enumerate().collect(),
            roulette_wheel: roulette_wheel
        }
    }
}

impl<'a, R: Rng, T: 'a> Iterator for SelectIter<'a, R, T> {
    type Item = (f32, &'a T);

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.fitnesses_ids.len(), Some(self.fitnesses_ids.len()))
    }

    fn next(&mut self) -> Option<Self::Item> {
        if !self.fitnesses_ids.is_empty() {
            let sample = self.distribution_range.ind_sample(&mut self.rng);
            let mut selection = sample * self.total_fitness;
            let index = self.fitnesses_ids.iter().position(|&(_, fit)| {
                            selection -= fit;
                            selection <= 0.0
                        }).unwrap();
            let (index, fitness) = self.fitnesses_ids.swap_remove(index);
            self.total_fitness -= fitness;
            Some((fitness, &self.roulette_wheel.population[index]))
        }
        else { None }
    }
}

impl<T> IntoIterator for RouletteWheel<T> {
    type Item = (f32, T);
    type IntoIter = IntoSelectIter<ThreadRng, T>;

    fn into_iter(self) -> IntoSelectIter<ThreadRng, T> {
        IntoSelectIter::<ThreadRng, _>::new(self)
    }
}

/// An iterator that moves out of a RouletteWheel.
///
/// This `struct` is created by the `into_iter` method on [`RouletteWheel`][`RouletteWheel`] (provided
/// by the [`IntoIterator`] trait).
///
/// [`RouletteWheel`]: struct.RouletteWheel.html
/// [`IntoIterator`]: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
pub struct IntoSelectIter<R: Rng, T> {
    distribution_range: Range<f32>,
    rng: R,
    total_fitness: f32,
    fitnesses: Vec<f32>,
    population: Vec<T>
}

impl<R: Rng, T> IntoSelectIter<R, T> {
    pub fn new(roulette_wheel: RouletteWheel<T>) -> IntoSelectIter<ThreadRng, T> {
        IntoSelectIter::from_rng(roulette_wheel, thread_rng())
    }

    pub fn from_rng(roulette_wheel: RouletteWheel<T>, rng: R) -> IntoSelectIter<R, T> {
        IntoSelectIter {
            distribution_range: Range::new(0.0, 1.0),
            rng: rng,
            total_fitness: roulette_wheel.total_fitness,
            fitnesses: roulette_wheel.fitnesses,
            population: roulette_wheel.population
        }
    }
}

impl<R: Rng, T> Iterator for IntoSelectIter<R, T> {
    type Item = (f32, T);

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.fitnesses.len(), Some(self.fitnesses.len()))
    }

    fn next(&mut self) -> Option<Self::Item> {
        if !self.fitnesses.is_empty() {
            let sample = self.distribution_range.ind_sample(&mut self.rng);
            let mut selection = sample * self.total_fitness;
            let index = self.fitnesses.iter().position(|fit| {
                            selection -= *fit;
                            selection <= 0.0
                        }).unwrap();
            let fitness = self.fitnesses.swap_remove(index);
            let individual = self.population.swap_remove(index);
            self.total_fitness -= fitness;
            Some((fitness, individual))
        }
        else { None }
    }
}

#[cfg(test)]
mod tests {
    use rand::SeedableRng;
    use rand::StdRng;
    use {RouletteWheel, SelectIter, IntoSelectIter};

    const SEED: [usize; 4] = [4, 2, 42, 4242];

    #[test]
    fn test_select_iter_seeded() {
        let rng = StdRng::from_seed(&SEED);

        let fitnesses = [0.1, 0.2, 0.3, 0.4, 0.5];
        let fitnesses = fitnesses.iter().cloned();
        let population = 15..20;
        let rw: RouletteWheel<_> = fitnesses.zip(population).collect();

        let mut iter = SelectIter::from_rng(&rw, rng);

        assert_eq!(iter.next(), Some((0.5, &19)));
        assert_eq!(iter.next(), Some((0.3, &17)));
        assert_eq!(iter.next(), Some((0.4, &18)));
        assert_eq!(iter.next(), Some((0.2, &16)));
        assert_eq!(iter.next(), Some((0.1, &15)));
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn test_into_select_iter_seeded() {
        let rng = StdRng::from_seed(&SEED);

        let fitnesses = [0.1, 0.2, 0.3, 0.4, 0.5];
        let fitnesses = fitnesses.iter().cloned();
        let population = 15..20;
        let rw: RouletteWheel<_> = fitnesses.zip(population).collect();

        let mut iter = IntoSelectIter::from_rng(rw, rng);

        assert_eq!(iter.next(), Some((0.5, 19)));
        assert_eq!(iter.next(), Some((0.3, 17)));
        assert_eq!(iter.next(), Some((0.4, 18)));
        assert_eq!(iter.next(), Some((0.2, 16)));
        assert_eq!(iter.next(), Some((0.1, 15)));
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn test_len() {
        let mut rw = RouletteWheel::<u8>::new();

        assert_eq!(rw.len(), 0);

        rw.push(0.1, 1);
        rw.push(0.1, 1);
        rw.push(0.1, 1);
        rw.push(0.1, 1);

        assert_eq!(rw.len(), 4);
    }
}