1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
use crate::time::{Duration, Time};
use crate::util::FAILED_TO_LOCK;
use crossbeam::sync::{Parker, Unparker};
use std::cell::Cell;
use std::cmp;
use std::collections::BinaryHeap;
use std::sync::{Arc, Mutex};
use std::thread::sleep;
use std::time::{Duration as StdDuration, SystemTime, UNIX_EPOCH};

static BEFORE_EPOCH: &'static str = "Requested time is before UNIX epoch.";

pub struct Delay {
    clock: Arc<dyn Clock>,
    delay: Duration,
}

impl Delay {
    pub fn new(clock: Arc<dyn Clock>, delay: Duration) -> Self {
        Self { clock, delay }
    }

    pub fn sleep(self) {
        self.clock.sleep(self.delay);
    }
}

pub struct Rate {
    clock: Arc<dyn Clock>,
    next: Cell<Time>,
    delay: Duration,
}

impl Rate {
    pub fn new(clock: Arc<dyn Clock>, delay: Duration) -> Rate {
        let start = clock.now();
        Rate {
            clock,
            next: Cell::new(start),
            delay,
        }
    }

    pub fn sleep(&self) {
        let new_time = self.next.get() + self.delay;
        self.next.set(new_time);
        self.clock.wait_until(new_time);
    }
}

pub trait Clock: Send + Sync {
    fn now(&self) -> Time;
    fn sleep(&self, d: Duration);
    fn wait_until(&self, t: Time);
    fn await_init(&self) {}
}

#[derive(Clone, Default)]
pub struct RealClock {}

impl Clock for RealClock {
    #[inline]
    fn now(&self) -> Time {
        let time = SystemTime::now()
            .duration_since(UNIX_EPOCH)
            .expect(BEFORE_EPOCH);
        Time {
            sec: time.as_secs() as u32,
            nsec: time.subsec_nanos() as u32,
        }
    }

    #[inline]
    fn sleep(&self, d: Duration) {
        if d < Duration::default() {
            return;
        }
        sleep(StdDuration::new(d.sec as u64, d.nsec as u32));
    }

    #[inline]
    fn wait_until(&self, t: Time) {
        self.sleep(t - self.now());
    }
}

struct Timeout {
    timestamp: Time,
    unparker: Unparker,
}

impl Drop for Timeout {
    fn drop(&mut self) {
        self.unparker.unpark();
    }
}

impl cmp::PartialEq for Timeout {
    fn eq(&self, other: &Self) -> bool {
        self.timestamp == other.timestamp
    }
}

impl cmp::PartialOrd for Timeout {
    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
        self.timestamp
            .partial_cmp(&other.timestamp)
            .map(cmp::Ordering::reverse)
    }
}

impl cmp::Eq for Timeout {}

impl cmp::Ord for Timeout {
    fn cmp(&self, other: &Self) -> cmp::Ordering {
        self.timestamp.cmp(&other.timestamp).reverse()
    }
}

#[derive(Default)]
pub struct SimData {
    current: Time,
    timeouts: BinaryHeap<Timeout>,
}

#[derive(Default)]
pub struct SimulatedClock {
    pub data: Mutex<SimData>,
}

impl SimulatedClock {
    pub fn trigger(&self, time: Time) {
        let mut data = self.data.lock().expect(FAILED_TO_LOCK);
        data.current = time;
        loop {
            match data.timeouts.peek() {
                None => break,
                Some(next) if next.timestamp > data.current => break,
                _ => {}
            }
            data.timeouts.pop();
        }
    }
}

impl Clock for SimulatedClock {
    #[inline]
    fn now(&self) -> Time {
        self.data.lock().expect(FAILED_TO_LOCK).current
    }

    #[inline]
    fn sleep(&self, d: Duration) {
        if d.sec < 0 || d.nsec < 0 {
            return;
        }
        let current = { self.data.lock().expect(FAILED_TO_LOCK).current };
        self.wait_until(current + d);
    }

    #[inline]
    fn wait_until(&self, timestamp: Time) {
        let parker = Parker::new();
        let unparker = parker.unparker().clone();
        {
            self.data
                .lock()
                .expect(FAILED_TO_LOCK)
                .timeouts
                .push(Timeout {
                    timestamp,
                    unparker,
                });
        }
        parker.park()
    }

    fn await_init(&self) {
        if self.data.lock().expect(FAILED_TO_LOCK).current == Time::default() {
            self.wait_until(Time::from_nanos(1));
        }
    }
}