1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
use crate::errors::OscError;

use alloc::string::{String, ToString};
use alloc::vec::Vec;
use std::collections::HashSet;
use std::iter::FromIterator;
use nom::branch::alt;
use nom::bytes::complete::{is_a, is_not, tag, take, take_while1, take_while_m_n};
use nom::character::complete::{char, satisfy};
use nom::combinator::{all_consuming, complete, opt, recognize, verify};
use nom::error::{ErrorKind, ParseError};
use nom::multi::{many1, separated_list1};
use nom::sequence::{delimited, pair, separated_pair};
use nom::{IResult, Parser};

/// A valid OSC method address.
///
/// A valid OSC address begins with a `/` and contains at least a method name, e.g. `/tempo`.
/// A plain address must not include any of the following characters `#*,/?[]{}`, since they're reserved for OSC address patterns.
pub struct OscAddress<'a>(&'a str);

impl<'a> OscAddress<'a> {
    pub fn new(address: &'a str) -> Result<Self, OscError> {
        match verify_address(address) {
            Ok(_) => Ok(OscAddress(address)),
            Err(e) => Err(e),
        }
    }
}

/// With a Matcher OSC method addresses can be [matched](Matcher::match_address) against an OSC address pattern.
/// Refer to the OSC specification for details about OSC address spaces: <http://opensoundcontrol.org/spec-1_0.html#osc-address-spaces-and-osc-addresses>
#[derive(Debug)]
pub struct Matcher {
    pub pattern: String,
    pattern_parts: Vec<AddressPatternComponent>,
}

impl Matcher {
    /// Instantiates a new `Matcher` with the given address pattern.
    /// An error will be returned if the given address pattern is invalid.
    ///
    /// Matcher should be instantiated once per pattern and reused because its construction requires parsing the address pattern which is computationally expensive.
    ///
    /// A valid address pattern begins with a `/` and contains at least a method name, e.g. `/tempo`.
    /// OSC defines a couple of rules that look like regular expression but are subtly different:
    ///
    /// - `?` matches a single character
    /// - `*` matches zero or more characters
    /// - `[a-z]` are basically regex [character classes](https://www.regular-expressions.info/charclass.html)
    /// - `{foo,bar}` is an alternative, matching either `foo` or `bar`
    /// - everything else is matched literally
    ///
    /// Refer to the OSC specification for details about address pattern matching: <osc-message-dispatching-and-pattern-matching>.
    ///
    /// # Examples
    ///
    /// ```
    /// use rosc::address::Matcher;
    ///
    /// Matcher::new("/tempo").expect("valid address");
    /// Matcher::new("").expect_err("address does not start with a slash");
    /// ```
    pub fn new(pattern: &str) -> Result<Self, OscError> {
        verify_address_pattern(pattern)?;
        let mut match_fn = all_consuming(many1(map_address_pattern_component));
        let (_, pattern_parts) = match_fn(pattern).map_err(|err| OscError::BadAddressPattern(err.to_string()))?;

        Ok(Matcher {
            pattern: pattern.into(),
            pattern_parts,
        })
    }

    /// Match an OSC address against an address pattern.
    /// If the address matches the pattern the result will be `true`, otherwise `false`.
    ///
    /// # Examples
    ///
    /// ```
    /// use rosc::address::{Matcher, OscAddress};
    ///
    /// let matcher = Matcher::new("/oscillator/[0-9]/{frequency,phase}").unwrap();
    /// assert!(matcher.match_address(OscAddress::new("/oscillator/1/frequency").unwrap()));
    /// assert!(matcher.match_address(OscAddress::new("/oscillator/8/phase").unwrap()));
    /// assert_eq!(matcher.match_address(OscAddress::new("/oscillator/4/detune").unwrap()), false);
    /// ```
    pub fn match_address(&self, address: OscAddress) -> bool {
        // Trivial case
        if address.0 == self.pattern {
            return true;
        }
        let mut remainder: &str = address.0;
        // Match the the address component by component
        for (index, part) in self.pattern_parts.as_slice().iter().enumerate() {
            let result = match part {
                AddressPatternComponent::Tag(s) => match_literally(remainder, s.as_str()),
                AddressPatternComponent::WildcardSingle => match_wildcard_single(remainder),
                AddressPatternComponent::Wildcard(l) => {
                    // Check if this is the last pattern component
                    if index < self.pattern_parts.len() - 1 {
                        let next = &self.pattern_parts[index + 1];
                        match next {
                            // If the next component is a '/', there are no more components in the current part and it can be wholly consumed
                            AddressPatternComponent::Tag(s) if s == "/" => {
                                match_wildcard(remainder, *l, None)
                            }
                            _ => match_wildcard(remainder, *l, Some(next)),
                        }
                    } else {
                        match_wildcard(remainder, *l, None)
                    }
                }
                AddressPatternComponent::CharacterClass(cc) => match_character_class(remainder, cc),
                AddressPatternComponent::Choice(s) => match_choice(remainder, s),
            };

            match result {
                Ok((i, _)) => remainder = i,
                Err(_) => return false, // Component didn't match, goodbye
            };
        }

        // Address is only matched if it was consumed entirely
        remainder.is_empty()
    }
}

/// Check whether a character is an allowed address character
/// All printable ASCII characters except for a few special characters are allowed
fn is_address_character(x: char) -> bool {
    if !x.is_ascii() || x.is_ascii_control() {
        return false
    }

    return ![' ', '#', '*', ',', '/', '?', '[', ']', '{', '}'].contains(&x)
}

/// Parser to turn a choice like '{foo,bar}' into a vector containing the choices, like ["foo", "bar"]
fn pattern_choice(input: &str) -> IResult<&str, Vec<&str>> {
    delimited(
        char('{'),
        separated_list1(tag(","), take_while1(is_address_character)),
        char('}'),
    )(input)
}

/// Parser to recognize a character class like [!a-zA-Z] and return '!a-zA-Z'
fn pattern_character_class(input: &str) -> IResult<&str, &str> {
    let inner = pair(
        // It is important to read the leading negating '!' to make sure the rest of the parsed
        // character class isn't empty. E.g. '[!]' is not a valid character class.
        recognize(opt(tag("!"))),
        // Read all remaining character ranges and single characters
        // We also need to verify that ranges are increasing by ASCII value. For example, a-z is
        // valid, but z-a or a-a is not.
        recognize(many1(verify(
            alt((
                separated_pair(
                    satisfy(is_address_character),
                    char('-'),
                    satisfy(is_address_character),
                ),
                // Need to map this into a tuple to make it compatible with the output of the
                // separated pair parser above. Will always validate as true.
                satisfy(is_address_character).map(|c| ('\0', c))
            )),
            |(o1, o2): &(char, char)| o1 < o2,
        ))),
    );

    delimited(char('['), recognize(inner), char(']'))(input)
}

/// A characters class is defined by a set or range of characters that it matches.
/// For example, [a-z] matches all lowercase alphabetic letters. It can also contain multiple
/// ranges, like [a-zA-Z]. Instead of a range you can also directly provide the characters to match,
/// e.g. [abc123]. You can also combine this with ranges, like [a-z123].
/// If the first characters is an exclamation point, the match is negated, e.g. [!0-9] will match
/// anything except numbers.
#[derive(Debug)]
struct CharacterClass {
    pub negated: bool,
    pub characters: String,
}

/// Expand a character range like 'a-d' to all the letters contained in the range, e.g. 'abcd'
/// This is done by converting the characters to their ASCII values and then getting every ASCII
/// in between.
fn expand_character_range(first: char, second: char) -> String {
    let start = first as u8;
    let end = second as u8;

    let range = start..=end;

    range
        .into_iter()
        .map(char::from)
        .filter(|c| is_address_character(*c))
        .collect()
}

impl CharacterClass {
    pub fn new(s: &str) -> Self {
        let mut input = s;
        let negated;
        match char::<_, nom::error::Error<&str>>('!')(input) {
            Ok((i, _)) => {
                negated = true;
                input = i;
            }
            Err(_) => negated = false,
        }

        let characters = complete(many1(alt((
            // '!' besides at beginning has no special meaning, but is legal
            char::<_, nom::error::Error<&str>>('!').map(|_| String::from("")),
            // attempt to match a range like a-z or 0-9
            separated_pair(
                satisfy(is_address_character),
                char('-'),
                satisfy(is_address_character),
            )
            .map(|(first, second)| expand_character_range(first, second)),
            // Match characters literally
            satisfy(is_address_character).map(|x| x.to_string()),
            // Trailing dash
            char('-').map(|_| String::from("-")),
        ))))(input);

        match characters {
            Ok((_, o)) => CharacterClass {
                negated,
                characters: HashSet::<char>::from_iter(o.concat().chars()).iter().collect(),
            },
            _ => {
                panic!("Invalid character class formatting {}", s)
            }
        }
    }
}

#[derive(Debug)]
enum AddressPatternComponent {
    Tag(String),
    Wildcard(usize),
    WildcardSingle,
    CharacterClass(CharacterClass),
    Choice(Vec<String>),
}

fn map_address_pattern_component(input: &str) -> IResult<&str, AddressPatternComponent> {
    alt((
        // Anything that's alphanumeric gets matched literally
        take_while1(is_address_character)
            .map(|s: &str| AddressPatternComponent::Tag(String::from(s))),
        // Slashes must be seperated into their own tag for the non-greedy implementation of wildcards
        char('/').map(|c: char| AddressPatternComponent::Tag(c.to_string())),
        tag("?").map(|_| AddressPatternComponent::WildcardSingle),
        // Combinations of wildcards are a bit tricky.
        // Multiple '*' wildcards in a row are equal to a single '*'.
        // A '*' wildcard followed by any number of '?' wildcards is also equal to '*' but must
        // match at least the same amount of characters as there are '?' wildcards in the combination.
        // For example, '*??' must match at least 2 characters.
        is_a("*?").map(|x: &str| AddressPatternComponent::Wildcard(x.matches('?').count())),
        pattern_choice.map(|choices: Vec<&str>| {
            AddressPatternComponent::Choice(choices.iter().map(|x| x.to_string()).collect())
        }),
        pattern_character_class
            .map(|s: &str| AddressPatternComponent::CharacterClass(CharacterClass::new(s))),
    ))(input)
}

fn match_literally<'a>(input: &'a str, pattern: &str) -> IResult<&'a str, &'a str> {
    tag(pattern)(input)
}

fn match_wildcard_single(input: &str) -> IResult<&str, &str> {
    take_while_m_n(1, 1, is_address_character)(input)
}

fn match_character_class<'a>(
    input: &'a str,
    character_class: &'a CharacterClass,
) -> IResult<&'a str, &'a str> {
    if character_class.negated {
        is_not(character_class.characters.as_str())(input)
    } else {
        is_a(character_class.characters.as_str())(input)
    }
}

/// Sequentially try all tags from choice element until one matches or return an error
/// Example choice element: '{foo,bar}'
/// It will get parsed into a vector containing the strings "foo" and "bar", which are then matched
fn match_choice<'a>(input: &'a str, choices: &[String]) -> IResult<&'a str, &'a str> {
    for choice in choices {
        if let Ok((i, o)) = tag::<_, _, nom::error::Error<&str>>(choice.as_str())(input) {
            return Ok((i, o));
        }
    }
    Err(nom::Err::Error(nom::error::Error::from_error_kind(
        input,
        ErrorKind::Tag,
    )))
}

/// Match Wildcard '*' by either consuming the rest of the part, or, if it's not the last component
/// in the part, by looking ahead and matching the next component
fn match_wildcard<'a>(
    input: &'a str,
    minimum_length: usize,
    next: Option<&AddressPatternComponent>,
) -> IResult<&'a str, &'a str> {
    match next {
        // No next component, consume all allowed characters until end or next '/'
        None => verify(take_while1(is_address_character), |s: &str| {
            s.len() >= minimum_length
        })(input),
        // There is another element in this part, so logic gets a bit more complicated
        Some(component) => {
            // Wildcards can only match within the current address part, discard the rest
            let address_part = match input.split_once('/') {
                Some((p, _)) => p,
                None => input,
            };

            // Attempt to find the latest matching occurrence of the next pattern component
            // This is a greedy wildcard implementation
            let mut longest: usize = 0;
            for i in 0..address_part.len() {
                let (_, substring) = input.split_at(i);
                let result: IResult<_, _, nom::error::Error<&str>> = match component {
                    AddressPatternComponent::Tag(s) => match_literally(substring, s.as_str()),
                    AddressPatternComponent::CharacterClass(cc) => {
                        match_character_class(substring, cc)
                    }
                    AddressPatternComponent::Choice(s) => match_choice(substring, s),
                    // These two cases are prevented from happening by map_address_pattern_component
                    AddressPatternComponent::WildcardSingle => {
                        panic!("Single wildcard ('?') must not follow wildcard ('*')")
                    }
                    AddressPatternComponent::Wildcard(_) => {
                        panic!("Double wildcards must be condensed into one")
                    }
                };

                if result.is_ok() {
                    longest = i
                }
            }
            verify(take(longest), |s: &str| s.len() >= minimum_length)(input)
        }
    }
}

/// Verify that an address is valid
///
/// # Examples
/// ```
/// use rosc::address::verify_address;
///
/// match verify_address("/oscillator/1") {
///     Ok(()) => println!("Address is valid"),
///     Err(e) => println!("Address is not valid")
/// }
/// ```
pub fn verify_address(input: &str) -> Result<(), OscError> {
    match all_consuming::<_, _, nom::error::Error<&str>, _>(many1(pair(
        tag("/"),
        take_while1(is_address_character),
    )))(input)
    {
        Ok(_) => Ok(()),
        Err(_) => Err(OscError::BadAddress("Invalid address".to_string())),
    }
}

/// Parse an address pattern's part until the next '/' or the end
fn address_pattern_part_parser(input: &str) -> IResult<&str, Vec<&str>> {
    many1::<_, _, nom::error::Error<&str>, _>(alt((
        take_while1(is_address_character),
        tag("?"),
        tag("*"),
        recognize(pattern_choice),
        pattern_character_class,
    )))(input)
}

/// Verify that an address pattern is valid
///
/// # Examples
/// ```
/// use rosc::address::verify_address_pattern;
///
/// match verify_address_pattern("/oscillator/[0-9]/*") {
///     Ok(()) => println!("Address is valid"),
///     Err(e) => println!("Address is not valid")
/// }
/// ```
pub fn verify_address_pattern(input: &str) -> Result<(), OscError> {
    match all_consuming(many1(
        // Each part must start with a '/'. This automatically also prevents a trailing '/'
        pair(tag("/"), address_pattern_part_parser.map(|x| x.concat())),
    ))(input)
    {
        Ok(_) => Ok(()),
        Err(_) => Err(OscError::BadAddress("Invalid address pattern".to_string())),
    }
}