1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// Copyright © 2021-2023 HQS Quantum Simulations GmbH. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the
// License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
// express or implied. See the License for the specific language governing permissions and
// limitations under the License.
//
//! Collection of roqoqo measurement operations.

use qoqo_calculator::Calculator;
use std::collections::{HashMap, HashSet};

use super::InvolvedClassical;
use super::SupportedVersion;
use crate::operations::{
    InvolveQubits, InvolvedQubits, Operate, OperatePragma, OperateSingleQubit, RoqoqoError,
    Substitute,
};
use crate::Circuit;

/// Measurement gate operation.
///
/// This Operation acts on one qubit writing the result of the measurement into a readout.
/// The classical register for the readout needs to be defined in advance by using a Definition operation.
///
/// # Note
///
/// Here, it is a measurement in terms of quantum mechanics. The obtained result of a single measurement will be either a `0` or a `1`.  
/// In order to be able to derive probabilities in the post-processing, the actual measurement needs to be repeated lots of times.
///
#[derive(
    Debug,
    Clone,
    PartialEq,
    Eq,
    roqoqo_derive::SupportedVersion,
    roqoqo_derive::Operate,
    roqoqo_derive::Substitute,
    roqoqo_derive::OperateSingleQubit,
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "json_schema", derive(schemars::JsonSchema))]
pub struct MeasureQubit {
    /// The measured qubit.
    qubit: usize,
    /// The register for the readout.
    readout: String,
    /// The index in the readout the result is saved to.
    readout_index: usize,
}

impl InvolveQubits for MeasureQubit {
    fn involved_qubits(&self) -> InvolvedQubits {
        let mut a: HashSet<usize> = HashSet::new();
        a.insert(self.qubit);
        InvolvedQubits::Set(a)
    }

    fn involved_classical(&self) -> super::InvolvedClassical {
        let mut a: HashSet<(String, usize)> = HashSet::new();
        a.insert((self.readout.clone(), self.readout_index));
        InvolvedClassical::Set(a)
    }
}

#[allow(non_upper_case_globals)]
const TAGS_MeasureQubit: &[&str; 3] = &["Operation", "Measurement", "MeasureQubit"];

/// This PRAGMA measurement operation returns the statevector of a quantum register.
///
#[derive(
    Debug,
    Clone,
    PartialEq,
    roqoqo_derive::SupportedVersion,
    roqoqo_derive::Operate,
    roqoqo_derive::OperatePragma,
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "json_schema", derive(schemars::JsonSchema))]
pub struct PragmaGetStateVector {
    /// The name of the classical readout register.
    readout: String,
    /// The measurement preparation Circuit, applied on a copy of the register before measurement (None if not defined, Some(Circuit) otherwise).
    circuit: Option<Circuit>,
}

#[allow(non_upper_case_globals)]
const TAGS_PragmaGetStateVector: &[&str; 4] = &[
    "Operation",
    "Measurement",
    "PragmaOperation",
    "PragmaGetStateVector",
];

/// Implements [Substitute] trait allowing to replace symbolic parameters and to perform qubit mappings.
impl Substitute for PragmaGetStateVector {
    /// Remaps qubits in operations in clone of the operation.
    fn remap_qubits(&self, mapping: &HashMap<usize, usize>) -> Result<Self, RoqoqoError> {
        let new_circuit = match self.circuit.as_ref() {
            Some(x) => Some(x.remap_qubits(mapping)?),
            _ => None,
        };
        Ok(PragmaGetStateVector::new(self.readout.clone(), new_circuit))
    }

    /// Substitutes symbolic parameters in clone of the operation.
    fn substitute_parameters(&self, calculator: &Calculator) -> Result<Self, RoqoqoError> {
        let new_circuit = match self.circuit.as_ref() {
            Some(x) => Some(x.substitute_parameters(calculator)?),
            _ => None,
        };
        Ok(PragmaGetStateVector::new(self.readout.clone(), new_circuit))
    }
}

// Implements the InvolveQubits trait for PragmaGetStateVector.
impl InvolveQubits for PragmaGetStateVector {
    /// Lists all involved qubits (here: All).
    fn involved_qubits(&self) -> InvolvedQubits {
        InvolvedQubits::All
    }

    fn involved_classical(&self) -> InvolvedClassical {
        InvolvedClassical::All(self.readout.clone())
    }
}

/// This PRAGMA measurement operation returns the density matrix of a quantum register.
///
#[derive(
    Debug,
    Clone,
    PartialEq,
    roqoqo_derive::SupportedVersion,
    roqoqo_derive::Operate,
    roqoqo_derive::OperatePragma,
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "json_schema", derive(schemars::JsonSchema))]
pub struct PragmaGetDensityMatrix {
    /// The name of the classical readout register.
    readout: String,
    /// The measurement preparation Circuit, applied on a copy of the register before measurement (None if not defined, Some(Circuit) otherwise).
    circuit: Option<Circuit>,
}

#[allow(non_upper_case_globals)]
const TAGS_PragmaGetDensityMatrix: &[&str; 4] = &[
    "Operation",
    "Measurement",
    "PragmaOperation",
    "PragmaGetDensityMatrix",
];

/// Implements [Substitute] trait allowing to replace symbolic parameters and to perform qubit mappings.
impl Substitute for PragmaGetDensityMatrix {
    /// Remaps qubits in operations in clone of the operation.
    fn remap_qubits(&self, mapping: &HashMap<usize, usize>) -> Result<Self, RoqoqoError> {
        let new_circuit = match self.circuit.as_ref() {
            Some(x) => Some(x.remap_qubits(mapping)?),
            _ => None,
        };
        Ok(PragmaGetDensityMatrix::new(
            self.readout.clone(),
            new_circuit,
        ))
    }

    /// Substitutes symbolic parameters in clone of the operation.
    fn substitute_parameters(&self, calculator: &Calculator) -> Result<Self, RoqoqoError> {
        let new_circuit = match self.circuit.as_ref() {
            Some(x) => Some(x.substitute_parameters(calculator)?),
            _ => None,
        };
        Ok(PragmaGetDensityMatrix::new(
            self.readout.clone(),
            new_circuit,
        ))
    }
}

// Implements the InvolveQubits trait for PragmaGetDensityMatrix.
impl InvolveQubits for PragmaGetDensityMatrix {
    /// Lists all involved qubits (here, all).
    fn involved_qubits(&self) -> InvolvedQubits {
        InvolvedQubits::All
    }

    fn involved_classical(&self) -> InvolvedClassical {
        InvolvedClassical::All(self.readout.clone())
    }
}

/// This PRAGMA measurement operation returns the vector of the occupation probabilities.
///
/// Occupation probabilities in the context of this PRAGMA Operation are probabilities of finding the quantum
/// register in each σ^z basis state. The quantum register remains unchanged by this PRAGMA measurement operation.
///
#[derive(
    Debug,
    Clone,
    PartialEq,
    roqoqo_derive::SupportedVersion,
    roqoqo_derive::Operate,
    roqoqo_derive::OperatePragma,
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "json_schema", derive(schemars::JsonSchema))]
pub struct PragmaGetOccupationProbability {
    /// The name of the classical readout register.
    readout: String,
    /// The measurement preparation Circuit, applied on a copy of the register before measurement (None if not defined, Some(Circuit) otherwise).
    circuit: Option<Circuit>,
}

#[allow(non_upper_case_globals)]
const TAGS_PragmaGetOccupationProbability: &[&str; 4] = &[
    "Operation",
    "Measurement",
    "PragmaOperation",
    "PragmaGetOccupationProbability",
];

/// Implements [Substitute] trait allowing to replace symbolic parameters and to perform qubit mappings.
impl Substitute for PragmaGetOccupationProbability {
    /// Remaps qubits in operations in clone of the operation.
    fn remap_qubits(&self, mapping: &HashMap<usize, usize>) -> Result<Self, RoqoqoError> {
        let new_circuit = match self.circuit.as_ref() {
            Some(x) => Some(x.remap_qubits(mapping)?),
            _ => None,
        };
        Ok(PragmaGetOccupationProbability::new(
            self.readout.clone(),
            new_circuit,
        ))
    }

    /// Substitutes symbolic parameters in clone of the operation.
    fn substitute_parameters(&self, calculator: &Calculator) -> Result<Self, RoqoqoError> {
        let new_circuit = match self.circuit.as_ref() {
            Some(x) => Some(x.substitute_parameters(calculator)?),
            _ => None,
        };
        Ok(PragmaGetOccupationProbability::new(
            self.readout.clone(),
            new_circuit,
        ))
    }
}

// Implements the InvolveQubits trait for PragmaGetOccupationProbability.
impl InvolveQubits for PragmaGetOccupationProbability {
    /// Lists all involved qubits (here, all).
    fn involved_qubits(&self) -> InvolvedQubits {
        InvolvedQubits::All
    }

    fn involved_classical(&self) -> InvolvedClassical {
        InvolvedClassical::All(self.readout.clone())
    }
}

/// This PRAGMA measurement operation returns a Pauli product expectation value.
///
/// This PRAGMA Operation returns a Pauli product expectation value after applying
/// a Rotate to another basis. It performs all of the operation on a clone of the quantum register,
/// so that the actual quantum register remains unchanged.
///
#[derive(
    Debug,
    Clone,
    PartialEq,
    roqoqo_derive::SupportedVersion,
    roqoqo_derive::Operate,
    roqoqo_derive::OperatePragma,
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "json_schema", derive(schemars::JsonSchema))]
pub struct PragmaGetPauliProduct {
    /// The HashMap of the pauli matrix to apply to each qubit in the form {qubit: pauli}. Allowed values to be provided for 'pauli' are: `0` = identity, `1` = PauliX, `2` = PauliY, `3` = PauliZ.
    qubit_paulis: HashMap<usize, usize>,
    /// The name of the classical readout register.
    readout: String,
    /// The measurement preparation Circuit, applied on a copy of the register before measurement.
    circuit: Circuit,
}

#[allow(non_upper_case_globals)]
const TAGS_PragmaGetPauliProduct: &[&str; 4] = &[
    "Operation",
    "Measurement",
    "PragmaOperation",
    "PragmaGetPauliProduct",
];

/// Implements [Substitute] trait allowing to replace symbolic parameters and to perform qubit mappings.
impl Substitute for PragmaGetPauliProduct {
    /// Remaps qubits in operations in clone of the operation.
    fn remap_qubits(&self, mapping: &HashMap<usize, usize>) -> Result<Self, RoqoqoError> {
        crate::operations::check_valid_mapping(mapping)?;

        let mut mutable_mapping: HashMap<usize, usize> = HashMap::new();
        for (key, val) in self.qubit_paulis.iter() {
            let new_key = mapping.get(key).unwrap_or(key);

            mutable_mapping.insert(*new_key, *val);
        }

        let new_circuit = self.circuit.remap_qubits(mapping).unwrap();
        Ok(PragmaGetPauliProduct::new(
            mutable_mapping,
            self.readout.clone(),
            new_circuit,
        ))
    }

    /// Substitutes symbolic parameters in clone of the operation.
    fn substitute_parameters(&self, calculator: &Calculator) -> Result<Self, RoqoqoError> {
        let new_circuit = self.circuit.substitute_parameters(calculator).unwrap();
        Ok(PragmaGetPauliProduct::new(
            self.qubit_paulis.clone(),
            self.readout.clone(),
            new_circuit,
        ))
    }
}

// Implements the InvolveQubits trait for PragmaGetPauliProduct.
impl InvolveQubits for PragmaGetPauliProduct {
    /// Lists all involved qubits.
    fn involved_qubits(&self) -> InvolvedQubits {
        let mut new_hash_set: HashSet<usize> = HashSet::new();
        for qubit in self.qubit_paulis.keys() {
            new_hash_set.insert(*qubit);
        }
        if let InvolvedQubits::Set(tmp_set) = &self.circuit.involved_qubits() {
            for qubit in tmp_set {
                new_hash_set.insert(*qubit);
            }
        }
        InvolvedQubits::Set(new_hash_set)
    }

    fn involved_classical(&self) -> InvolvedClassical {
        InvolvedClassical::All(self.readout.clone())
    }
}

/// This PRAGMA measurement operation returns a measurement record for N repeated measurements.
///
#[derive(
    Debug,
    Clone,
    PartialEq,
    Eq,
    roqoqo_derive::SupportedVersion,
    roqoqo_derive::Operate,
    roqoqo_derive::OperatePragma,
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "json_schema", derive(schemars::JsonSchema))]
pub struct PragmaRepeatedMeasurement {
    /// The name of the classical readout register.
    readout: String,
    /// The number of times N to repeat the measurement.
    number_measurements: usize,
    /// The mapping of qubits to indices in the readout register.
    qubit_mapping: Option<HashMap<usize, usize>>,
}

#[allow(non_upper_case_globals)]
const TAGS_PragmaRepeatedMeasurement: &[&str; 4] = &[
    "Operation",
    "Measurement",
    "PragmaOperation",
    "PragmaRepeatedMeasurement",
];

/// Implements [Substitute] trait allowing to replace symbolic parameters and to perform qubit mappings.
impl Substitute for PragmaRepeatedMeasurement {
    /// Remaps qubits in operations in clone of the operation.
    fn remap_qubits(&self, mapping: &HashMap<usize, usize>) -> Result<Self, RoqoqoError> {
        crate::operations::check_valid_mapping(mapping)?;
        let new_mapping = match &self.qubit_mapping {
            Some(hm) => {
                let mut mutable_mapping: HashMap<usize, usize> = HashMap::new();
                for (key, val) in hm {
                    let new_key = mapping.get(key).unwrap_or(key);

                    mutable_mapping.insert(*new_key, *val);
                }
                for (key, val) in mapping.iter() {
                    if mutable_mapping.get(key).is_none() {
                        mutable_mapping.insert(*key, *val);
                    }
                }
                Some(mutable_mapping)
            }
            None => Some(mapping.clone()),
        };
        Ok(PragmaRepeatedMeasurement::new(
            self.readout.clone(),
            self.number_measurements,
            new_mapping,
        ))
    }

    /// Substitutes symbolic parameters in clone of the operation.
    fn substitute_parameters(&self, _calculator: &Calculator) -> Result<Self, RoqoqoError> {
        Ok(self.clone())
    }
}

// Implements the InvolveQubits trait for PragmaRepeatedMeasurement.
impl InvolveQubits for PragmaRepeatedMeasurement {
    /// Lists all involved qubits (here, all).
    fn involved_qubits(&self) -> InvolvedQubits {
        InvolvedQubits::All
    }

    fn involved_classical(&self) -> InvolvedClassical {
        match &self.qubit_mapping {
            None => InvolvedClassical::AllQubits(self.readout.clone()),
            Some(x) => {
                let new_set: HashSet<(String, usize)> =
                    x.values().map(|v| (self.readout.clone(), *v)).collect();
                InvolvedClassical::Set(new_set)
            }
        }
    }
}