1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// Copyright © 2021 HQS Quantum Simulations GmbH. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the
// License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
// express or implied. See the License for the specific language governing permissions and
// limitations under the License.

use super::*;
use ndarray::{Array1, Array2};
#[cfg(feature = "serialize")]
use serde::{Deserialize, Serialize};

/// Collected information for executing a basis rotation measurement.
#[derive(Debug, PartialEq, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
pub struct BasisRotation {
    /// Constant Circuit that is executed before each Circuit in circuits.
    pub constant_circuit: Option<Circuit>,
    /// Collection of quantum circuits for the separate basis rotations.
    pub circuits: Vec<Circuit>,
    /// Additional input information required for measurement.
    pub input: BasisRotationInput,
}

impl Measure for BasisRotation {
    /// Returns the constant Circuit that is executed before each Circuit in circuits.
    ///
    /// # Returns
    ///
    /// * `&Option<Circuit` - The constant Circuit (None if not defined).
    fn constant_circuit(&self) -> &Option<Circuit> {
        &self.constant_circuit
    }

    /// Returns iterator over circuits for measurement.
    ///
    /// # Returns
    ///
    /// * `Box<dyn Iterator<Item = &'a Circuit> + 'a>` - The quantum circuits.
    fn circuits<'a>(&'a self) -> Box<dyn Iterator<Item = &'a Circuit> + 'a> {
        Box::new(self.circuits.iter())
    }

    /// Returns clone of Measurement with symbolic parameters replaced.
    ///
    /// # Arguments
    ///
    /// * `substituted_parameters` - The HashMap containing the substitutions to use in the Circuit.
    ///
    /// # Returns
    ///
    /// * `Ok(Self)` -  The Circuits with the parameters substituted.
    /// * `Err(RoqoqoError)` - The subsitution failed.
    ///
    fn substitute_parameters(
        &self,
        substituted_parameters: HashMap<String, f64>,
    ) -> Result<Self, RoqoqoError> {
        let mut calculator = qoqo_calculator::Calculator::new();
        for (name, val) in substituted_parameters.iter() {
            calculator.set_variable(name, *val)
        }
        let new_constant_circuit = match &self.constant_circuit {
            None => None,
            Some(c) => Some(c.substitute_parameters(&mut calculator)?),
        };
        let mut new_circuits = Vec::new();
        for circ in self.circuits.iter() {
            let mut calculator = qoqo_calculator::Calculator::new();
            for (name, val) in substituted_parameters.iter() {
                calculator.set_variable(name, *val)
            }
            new_circuits.push(circ.substitute_parameters(&mut calculator)?)
        }
        Ok(Self {
            constant_circuit: new_constant_circuit,
            circuits: new_circuits,
            input: self.input.clone(),
        })
    }
}

impl MeasureExpectationValues for BasisRotation {
    // TODO add optional device later for use with flipped measurement
    #[allow(unused_variables)]
    /// Executes the basis rotation measurement.
    ///
    /// # Arguments
    ///
    /// * `bit_registers` - The classical bit registers as a HashMap with the register name as key.
    /// * `float_registers` - The classical float registers as a HashMap with the register name as key.
    /// * `complex_registers` - The classical complex registers as a HashMap with the register name as key.
    ///
    /// # Returns
    ///
    /// * `Ok(Some(HashMap<String, f64>))` - The measurement has been evaluated successfully. The HashMap contains the measured expectation values.
    /// * `Ok(None)` - The measurement did not fail but is incomplete. A new round of measurements is needed
    /// * `Err([RoqoqoError::BasisRotationMeasurementError])` - An error occured in basis rotation measurement.
    ///
    fn evaluate(
        &self,
        bit_registers: HashMap<String, BitOutputRegister>,
        float_registers: HashMap<String, FloatOutputRegister>,
        complex_registers: HashMap<String, ComplexOutputRegister>,
    ) -> Result<Option<HashMap<String, f64>>, RoqoqoError> {
        // todo replace with actual input
        let measurement_fidelities = vec![1.0; self.input.number_qubits];

        // Setting up measurement correction factors for flipped measurement
        let mut measurement_correction_factors: HashMap<String, Vec<f64>> = HashMap::new();
        let flipped_and_extension: Vec<(bool, &'static str)>;
        if self.input.use_flipped_measurement {
            // helper vector to iterate over when evaluating the pauli products
            flipped_and_extension = vec![(false, ""), (true, "_flipped")];
            for (name, pauli_product_mask) in self.input.pauli_product_qubit_masks.iter() {
                let mut measurement_correction_factor: Vec<f64> =
                    (0..self.input.number_pauli_products)
                        .into_iter()
                        .map(|_| 1.0)
                        .collect();
                for (pp_index, indices) in pauli_product_mask.iter() {
                    if !indices.is_empty() {
                        for i in indices {
                            measurement_correction_factor[*pp_index] *= measurement_fidelities[*i]
                        }
                    }
                }
                measurement_correction_factors.insert(name.clone(), measurement_correction_factor);
            }
        } else {
            flipped_and_extension = vec![(false, "")];
        }
        let mut pauli_product_dict: HashMap<String, Array1<f64>> = HashMap::new();
        for (register_name, mask) in self.input.pauli_product_qubit_masks.iter() {
            for (flip_measurement, extension) in flipped_and_extension.iter() {
                let register = bit_registers
                    .get(&format!("{}{}", register_name.as_str(), extension))
                    .ok_or(RoqoqoError::BasisRotationMeasurementError {
                        msg: format!(
                            "bit register {}{} not found",
                            register_name.as_str(),
                            extension
                        ),
                    })?;
                let mut single_shot_pauli_products: Array2<f64> =
                    Array2::zeros((register.len(), self.input.number_pauli_products));
                for (index, mask_val) in mask.iter() {
                    if mask_val.is_empty() {
                        single_shot_pauli_products.column_mut(*index).fill(1.0);
                    } else {
                        // Accessing column of single_shot_pauli_products that corresponds to pauli product designated by index
                        let mut column = single_shot_pauli_products.column_mut(*index);
                        // Iterate over all single shot readouts for all qubits and construct Pauli Product
                        for (row_index, values) in register.iter().enumerate() {
                            // Determine the value of the pauli product with the parity of the number of 0 and 1 measurements of the qubits
                            // false is even parity and true is odd parity
                            let mut parity = false;
                            for i in mask_val.iter() {
                                // For flipped readout a false (0) qubit measurement will flip the parity
                                // For a not-flipped measurement a true (1) qubit measurement will flip the parity
                                if values[*i] ^ flip_measurement {
                                    parity = !parity
                                }
                            } // Map even parity measurement result to 1 and odd parity result to -1
                            column[row_index] = match parity {
                                false => 1.0,
                                true => -1.0,
                            };
                        }
                    }
                }
                let mut pauli_products_tmp: Array1<f64> =
                    Array1::zeros(self.input.number_pauli_products);
                for i in 0..self.input.number_pauli_products {
                    pauli_products_tmp[i] = single_shot_pauli_products.column(i).mean().ok_or(
                        RoqoqoError::BasisRotationMeasurementError {
                            msg: format!(
                                "Column {} out of index for sinlge_shot_pauli_products",
                                i
                            ),
                        },
                    )?;
                }
                pauli_product_dict.insert(
                    format!("{}{}", register_name.as_str(), extension),
                    pauli_products_tmp,
                );
            }
        }

        let mut pauli_products: Array1<f64> = Array1::zeros(self.input.number_pauli_products);
        for (register_name, _) in self.input.pauli_product_qubit_masks.iter() {
            if !register_name.ends_with("flipped") {
                // Create temporary averaged vector of pauli_products
                // Averaging between normal and flipped readout when flipped measurement is used
                if self.input.use_flipped_measurement {
                    let tmp_pauli_products = (&pauli_product_dict
                        .get(register_name.as_str())
                        .ok_or(RoqoqoError::BasisRotationMeasurementError {
                            msg: format!("Register name {} not fount", register_name),
                        })?
                        .view()
                        + &pauli_product_dict
                            .get(format!("{}_flipped", register_name).as_str())
                            .ok_or(RoqoqoError::BasisRotationMeasurementError {
                                msg: format!("Register name {}_flipped not fount", register_name),
                            })?
                            .view())
                        / 2.0;
                    // reinserting in dict of pauli products
                    pauli_products += &tmp_pauli_products.view();
                } else {
                    pauli_products += &pauli_product_dict
                        .get(register_name.as_str())
                        .ok_or(RoqoqoError::BasisRotationMeasurementError {
                            msg: format!("Register name {} not fount", register_name),
                        })?
                        .view()
                }
            }
        }
        // Evaluating expectation values
        let mut results: HashMap<String, f64> = HashMap::new();

        for (name, evaluation) in self.input.measured_exp_vals.iter() {
            results.insert(
                name.clone(),
                match evaluation {
                    PauliProductsToExpVal::Linear(hm) => {
                        let mut value: f64 = 0.0;
                        for (index, coefficient) in hm {
                            value += pauli_products[*index] * coefficient;
                        }
                        value
                    }
                    PauliProductsToExpVal::Symbolic(x) => {
                        let mut calculator = qoqo_calculator::Calculator::new();
                        for (ind, p) in pauli_products.iter().enumerate() {
                            calculator.set_variable(format!("pauli_product_{}", ind).as_str(), *p);
                        }
                        calculator.parse_get(x.clone())?
                    }
                },
            );
        }

        Ok(Some(results))
    }
}