1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
// Copyright © 2021 HQS Quantum Simulations GmbH. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the
// License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
// express or implied. See the License for the specific language governing permissions and
// limitations under the License.

//! Operations are the atomic instructions in any quantum program that can be represented by roqoqo.
//!
//! Operations can be of various kinds: Definitions, GateOperations, PRAGMAs or measurement Operations.
//! * Definition operations define the classical registers and variables in the Circuit.
//! * GateOperations are single-, two- or multi-qubit gate operations that act on a set of qubits
//! and can be executed on a quantum computing device.
//! * PRAGMAs are operations that can be used when running a simulation of a quantum computing program.
//! * Measurement Operations are operations that perform a measurement either on a quantum computing device (MeasuareQubit)
//! or on a simulation of a quantum computing program (PRAGMA measurement operations).

use crate::RoqoqoError;
#[cfg(feature = "dynamic")]
use dyn_clone::DynClone;
use ndarray::Array2;
use num_complex::Complex64;
use qoqo_calculator::{Calculator, CalculatorComplex, CalculatorFloat};
use roqoqo_derive::*;
use std::collections::{HashMap, HashSet};
/// Collection of roqoqo definition operations.
#[doc(hidden)]
mod define_operations;
pub use define_operations::*;
/// Collection of roqoqo measurement operations.
#[doc(hidden)]
mod measurement_operations;
pub use measurement_operations::*;
/// Collection of roqoqo multi qubit gate operations.
#[doc(hidden)]
mod multi_qubit_gate_operations;
pub use multi_qubit_gate_operations::*;
/// Collection of roqoqo PRAGMA operation structs.\
#[doc(hidden)]
mod pragma_operations;
pub use pragma_operations::*;
/// Collection of roqoqo single qubit gate operations.
#[doc(hidden)]
mod single_qubit_gate_operations;
pub use single_qubit_gate_operations::*;
/// Collection of roqoqo two qubit gate operations.
#[doc(hidden)]
mod two_qubit_gate_operations;
pub use two_qubit_gate_operations::*;

include!(concat!(env!("OUT_DIR"), "/_auto_generated_operations.rs"));

/// Represents qubits involved in a roqoqo Operation.
#[derive(Debug, PartialEq, Clone, Eq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub enum InvolvedQubits {
    /// Operation affects all qubits no matter how many there are.
    All,
    /// Operation affects no qubits (annotations etc.).
    None,
    /// Operation affects a specific set of qubits.
    Set(HashSet<usize>),
}
#[cfg(feature = "dynamic")]
/// Universal basic trait for all operations of roqoqo.
#[cfg_attr(feature = "dynamic", typetag::serde(tag = "Operate"))]
pub trait Operate: InvolveQubits + SubstituteDyn + DynClone + std::fmt::Debug + Send {
    /// Returns tags classifying the type of operation.
    ///
    /// Used for type based dispatch in ffi interfaces.
    fn tags(&self) -> &'static [&'static str];
    /// Returns hqslang name of operation.
    ///
    /// As a general rule that should correspond to the roqoqo name of the operation.
    fn hqslang(&self) -> &'static str;
    /// Returns true when operation has symbolic parameters.
    fn is_parametrized(&self) -> bool;
}

#[cfg(not(feature = "dynamic"))]
/// Universal basic trait for all operations of roqoqo.
///
/// # Example
/// ```
/// use roqoqo::operations::{Operate, PauliX, RotateZ};
/// use qoqo_calculator::CalculatorFloat;
///
/// let paulix = PauliX::new(0);
/// let gate_tags: &[&str; 4] = &[
///     "Operation",
///     "GateOperation",
///     "SingleQubitGateOperation",
///     "PauliX",
/// ];
///
/// // 1) The tags of the operation tell us what kind of operation it is, and what traits it implements
/// assert_eq!(paulix.tags(), gate_tags);
/// // 2) The name of the operation is given by hqslang
/// assert_eq!(paulix.hqslang(), "PauliX");
/// // 3) Whether a gate is parametrized is determined by whether any of its inputs are symbolic (CalculatorFloat with a string).
/// // As the PauliX gate only takes an integer input (qubit), it can never be parametrized.
/// assert!(!paulix.is_parametrized());
/// // However, a RotateZ gate can be parametrized:
/// let rotatez_param = RotateZ::new(0, CalculatorFloat::from("parametrized"));
/// assert!(rotatez_param.is_parametrized());
/// // But it can also not be parametrized:
/// let rotatez_not_param = RotateZ::new(0, CalculatorFloat::from(2.0));
/// assert!(!rotatez_not_param.is_parametrized());
/// ```
///
pub trait Operate: InvolveQubits + Substitute + Clone + std::fmt::Debug + Send {
    /// Returns tags classifying the type of the operation.
    ///
    /// Used for type based dispatch in ffi interfaces.
    fn tags(&self) -> &'static [&'static str];
    /// Returns hqslang name of the operation.
    ///
    /// As a general rule that should correspond to the roqoqo name of the operation.
    fn hqslang(&self) -> &'static str;
    /// Returns `true` when operation has symbolic parameters.
    fn is_parametrized(&self) -> bool;
}

#[cfg(feature = "dynamic")]
dyn_clone::clone_trait_object!(Operate);

/// Trait for the qubits involved in each Operation.
///
/// # Example
/// ```
/// use roqoqo::operations::{CNOT, DefinitionFloat, InvolveQubits, InvolvedQubits, PragmaRepeatedMeasurement};
/// use std::collections::{HashMap, HashSet};
///
/// // The involved qubits of the operation tell us which qubits are affected by the Operation.
/// // There are three possibilities:
/// // 1) The involved qubits are a set of integers (usize): these are the qubits affected by the Operation
/// let cnot = CNOT::new(0, 1);
/// let mut qubits: HashSet<usize> = HashSet::new();
/// qubits.insert(0);
/// qubits.insert(1);
/// assert_eq!(cnot.involved_qubits(), InvolvedQubits::Set(qubits));
/// // 2) The involved qubits are None: there are no qubits affected by this Operation
/// let def_float = DefinitionFloat::new("ro".to_string(), 1, true);
/// assert_eq!(def_float.involved_qubits(), InvolvedQubits::None);
/// // 3) The involved qubits are All: all of the qubits in the Circuit are affected by the Operation
/// let mut qubit_mapping: HashMap<usize, usize> = HashMap::new();
/// qubit_mapping.insert(0, 1);
/// let pragma = PragmaRepeatedMeasurement::new("ro".to_string(), 2, Some(qubit_mapping.clone()));
/// assert_eq!(pragma.involved_qubits(), InvolvedQubits::All);
/// ```
pub trait InvolveQubits {
    /// Returns a list of all involved qubits.
    fn involved_qubits(&self) -> InvolvedQubits;
}

/// Substitute trait allowing to replace symbolic parameters and to perform qubit mappings.
///
/// # Example
/// ```
/// use roqoqo::operations::{RotateZ, Substitute};
/// use qoqo_calculator::{Calculator, CalculatorFloat};
/// use std::collections::HashMap;
///
/// // 1) The substitute_parameters function substitutes all symbolic parameters in the Operation and its inputs
/// let rotatez = RotateZ::new(0, CalculatorFloat::from("sub"));
/// let mut substitution_dict: Calculator = Calculator::new();
/// substitution_dict.set_variable("sub", 0.0);
/// let result = rotatez
///     .substitute_parameters(&mut substitution_dict)
///     .unwrap();
/// assert_eq!(result, RotateZ::new(0, CalculatorFloat::from(0.0)));
/// // 2) The remap_qubits function remaps all qubits in the Operation and its inputs
/// let rotatez = RotateZ::new(0, CalculatorFloat::from(0.0));
/// let mut qubit_mapping_test: HashMap<usize, usize> = HashMap::new();
/// qubit_mapping_test.insert(0, 2);
/// let result = rotatez.remap_qubits(&qubit_mapping_test).unwrap();
/// assert_eq!(result, RotateZ::new(2, CalculatorFloat::from(0.0)));
/// ```
///
pub trait Substitute
where
    Self: Sized,
{
    /// Substitutes symbolic parameters in clone of the operation.
    fn substitute_parameters(&self, calculator: &mut Calculator) -> Result<Self, RoqoqoError>;
    /// Remaps the qubits in clone of the operation.
    fn remap_qubits(&self, mapping: &HashMap<usize, usize>) -> Result<Self, RoqoqoError>;
}

#[cfg(feature = "dynamic")]
/// Helper trait for implementing substitute for Box<dyn> operation.
pub trait SubstituteDyn {
    /// Substitute parameters in symbolic expression in clone of operation.
    fn substitute_parameters_dyn(
        &self,
        calculator: &mut Calculator,
    ) -> Result<Box<dyn Operate>, RoqoqoError>;
    /// Remap qubits in operations in clone of operation.
    fn remap_qubits_dyn(
        &self,
        mapping: &HashMap<usize, usize>,
    ) -> Result<Box<dyn Operate>, RoqoqoError>;
}

#[cfg(feature = "dynamic")]
impl<T> SubstituteDyn for T
where
    T: 'static + Operate + Substitute,
{
    /// Substitute symbolic parameters in boxed clone of operation.
    fn substitute_parameters_dyn(
        &self,
        calculator: &mut Calculator,
    ) -> Result<Box<dyn Operate>, RoqoqoError> {
        Ok(Box::new(Substitute::substitute_parameters(
            self, calculator,
        )?))
    }
    /// Remap qubits in operations in boxed clone of operation.
    fn remap_qubits_dyn(
        &self,
        mapping: &HashMap<usize, usize>,
    ) -> Result<Box<dyn Operate>, RoqoqoError> {
        Ok(Box::new(Substitute::remap_qubits(self, mapping)?))
    }
}

/// Trait for operations acting on exactly one qubit.
///
/// # Example
/// ```
/// use roqoqo::operations::{OperateSingleQubit, PauliX};
/// let paulix = PauliX::new(0);
/// assert_eq!(paulix.qubit(), &0_usize);
/// ```
///
pub trait OperateSingleQubit: Operate + InvolveQubits + Substitute + Clone + PartialEq {
    /// Returns `qubit` the Operation acts on.
    fn qubit(&self) -> &usize;
}

/// Trait for Operations acting on exactly two qubits.
///
/// # Example
/// ```
/// use roqoqo::operations::{CNOT, OperateTwoQubit};
/// let cnot = CNOT::new(0, 1);
/// assert_eq!(cnot.control(), &0_usize);
/// assert_eq!(cnot.target(), &1_usize);
/// ```
///
pub trait OperateTwoQubit: Operate + InvolveQubits + Substitute + Clone + PartialEq {
    /// Returns `target` qubit of two qubit Operation.
    fn target(&self) -> &usize;
    /// Returns `control` qubit of two qubit Operation.
    fn control(&self) -> &usize;
}

/// Trait for operations acting on multiple (more than two) qubits.
///
/// # Example
/// ```
/// use roqoqo::operations::{MultiQubitMS, OperateMultiQubit};
/// use qoqo_calculator::CalculatorFloat;
/// let multi_ms = MultiQubitMS::new(vec![0, 1, 3], CalculatorFloat::from(0.0));
/// assert_eq!(multi_ms.qubits(), &vec![0, 1, 3]);
/// ```
///
pub trait OperateMultiQubit: Operate + InvolveQubits + Substitute + Clone + PartialEq {
    /// Returns vector of qubits operation is acting on in descending order of significance
    fn qubits(&self) -> &Vec<usize>;
}

/// Trait for PRAGMA Operations that are not necessary available on all universal quantum hardware.
///
/// PRAGMA Operations are unphysical in terms of quantum mechanics and are meant to be used for simulation purposes only, i.e. to run on simulation backends.
///
pub trait OperatePragma: Operate + InvolveQubits + Substitute + Clone + PartialEq {}

/// Trait for PRAGMA Operations that are not necessary available on all universal quantum hardware, that indicate noise.
///
/// # Example
/// ```
/// use ndarray::{array, Array2};
/// use roqoqo::operations::{OperatePragmaNoise, PragmaDamping};
/// use qoqo_calculator::CalculatorFloat;
///
/// let pragma = PragmaDamping::new(0, CalculatorFloat::from(0.005), CalculatorFloat::from(0.02));
///
/// // 1) The superoperator representation of the noise Pragma
/// let superop_pre_exp: f64 = -1.0 * 0.005 * 0.02;
/// let superop_prob: f64 = 1.0 - superop_pre_exp.exp();
/// let superop_sqrt: f64 = (1.0 - superop_prob).sqrt();
/// let superop: Array2<f64> = array![
///     [1.0, 0.0, 0.0, superop_prob],
///     [0.0, superop_sqrt, 0.0, 0.0],
///     [0.0, 0.0, superop_sqrt, 0.0],
///     [0.0, 0.0, 0.0, 1.0 - superop_prob],
/// ];
/// assert_eq!(superop, pragma.superoperator().unwrap());
/// // 2) The power function applied to the noise Pragma
/// let pragma_test = PragmaDamping::new(
///     0,
///     CalculatorFloat::from(0.005 * 1.5),
///     CalculatorFloat::from(0.02),
/// );
/// assert_eq!(pragma_test, pragma.powercf(CalculatorFloat::from(1.5)));
/// ```
///
pub trait OperatePragmaNoise:
    Operate + InvolveQubits + Substitute + Clone + PartialEq + OperatePragma
{
    /// Returns superoperator matrix of the Operation.
    fn superoperator(&self) -> Result<Array2<f64>, RoqoqoError>;
    /// Returns the gate to the power of `power`.
    fn powercf(&self, power: CalculatorFloat) -> Self;
}

/// Trait for PRAGMA Operations that are not necessary available on all universal quantum hardware, that indicate noise.
///
/// # Example
/// ```
/// use ndarray::{array, Array2};
/// use roqoqo::operations::{OperatePragmaNoiseProba, PragmaDamping};
/// use qoqo_calculator::CalculatorFloat;
///
/// let pragma = PragmaDamping::new(0, CalculatorFloat::from(0.005), CalculatorFloat::from(0.02));
///
/// // The probability of the noise Pragma
/// let proba_pre_exp: f64 = -2.0 * 0.005 * 0.02;
/// let proba = CalculatorFloat::from(0.5 * (1.0 - proba_pre_exp.exp()));
/// assert_eq!(proba, pragma.probability());
/// ```
///
pub trait OperatePragmaNoiseProba:
    Operate + InvolveQubits + Substitute + Clone + PartialEq + OperatePragma + OperatePragmaNoise
{
    /// Returns the probability of the gate, based on its gate_time and rate.
    fn probability(&self) -> CalculatorFloat;
}

/// Trait for Operations acting with a unitary gate on a set of qubits.
///
/// # Example
/// ```
/// use ndarray::array;
/// use num_complex::Complex64;
/// use roqoqo::operations::{OperateGate, PauliX};
///
/// let paulix = PauliX::new(0);
/// let matrix = array![
///     [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
///     [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
/// ];
/// assert_eq!(paulix.unitary_matrix().unwrap(), matrix);
/// ```
///
pub trait OperateGate: Operate + InvolveQubits + Substitute + Clone + PartialEq {
    /// Returns unitary matrix of the gate.
    fn unitary_matrix(&self) -> Result<Array2<Complex64>, RoqoqoError>;
}

/// Trait for unitary operations corresponding to rotations that can be characteriszed by a single rotation parameter theta.
///
/// # Example
/// ```
/// use qoqo_calculator::CalculatorFloat;
/// use roqoqo::operations::{Rotate, RotateX};
/// let rotatex = RotateX::new(0, 2.0.into());
///
/// // 1) The angle of rotation of the Rotate Operation
/// assert_eq!(rotatex.theta(), &CalculatorFloat::from(2.0));
/// // 2) The power function applied to the Rotate Operation
/// assert_eq!(rotatex.powercf(CalculatorFloat::from(1.5)), RotateX::new(0, 3.0.into()));
/// ```
///
pub trait Rotate: OperateGate + Operate + InvolveQubits + Substitute + Clone + PartialEq {
    /// Returns rotation parameter theta.
    fn theta(&self) -> &CalculatorFloat;
    /// Returns the gate to the power of `power`.`
    fn powercf(&self, power: CalculatorFloat) -> Self;

    #[cfg(feature = "overrotate")]
    /// Returns clone of the gate with one parameter statistically overrotated.
    ///
    /// A random number drawn from a normal distribution N(0, variance^2)
    /// and multiplied by the amplitue  is added to the overrotated parameter.  
    /// gate_overrotated.parameter() = gate.parameter + amplitude * rand(N(0, variance^2))
    ///
    /// This functionc is specifically designed for statistical overrotations that change the angle
    /// of an applied rotation gate randomly during the execution of a quantum program.  
    /// For static overrotations that represent a drift in the callibration of gates and are constant
    /// during the execution of a quantum programm use symbolic parameters and the substitute_parameters
    /// function.
    ///
    /// # Arguments
    ///
    /// *`amplitude` - The amplitude the random number is multiplied with.
    /// *`variance` - The standard deviation of the normal distribution the random number is drawn from.
    ///
    /// # Example
    /// ```
    /// use roqoqo::prelude::*;
    /// use roqoqo::operations::RotateZ;
    ///
    /// let gate = RotateZ::new(0, 1.0.into());
    /// let overrotated_gate = gate.overrotate(&1.0, &0.5);
    /// println!("{:?}", gate);
    /// println!("{:?}", overrotated_gate);
    /// let gate_symbolic = RotateZ::new(0, "theta_var".into());
    /// let overrotated_symbolic = gate_symbolic.overrotate(&1.0, &0.5);
    /// println!("{:?}", gate_symbolic);
    /// println!("{:?}", overrotated_symbolic);
    /// ```
    fn overrotate(&self, amplitude: &f64, variance: &f64) -> Self;
}

/// Trait for definition operations.
///
/// # Example
/// ```
/// use roqoqo::operations::{Define, DefinitionFloat};
/// let definition = DefinitionFloat::new("ro".to_string(), 1, false);
/// assert_eq!(definition.name(), &"ro".to_string());
/// ```
///
pub trait Define: Operate + InvolveQubits + Substitute + Clone + PartialEq {
    /// Returns name of definition operation.
    fn name(&self) -> &String;
}

/// Trait for unitary operations without any free parameters.
///
/// # Example
/// ```
/// use roqoqo::operations::{OperateConstantGate, PauliX};
/// let paulix = PauliX::new(0);
/// ```
///
pub trait OperateConstantGate:
    OperateGate + Operate + InvolveQubits + Substitute + Clone + PartialEq
{
    /// Returns true when unitary operation U is self inverse U*U = I.
    fn inverse(&self) -> GateOperation;
}

/// Trait for unitary operations acting on exactly one qubit.
///
/// Implements the general single qubit unitary gates  that can be brought into the form:
///
/// $$ U =e^{i \phi}\begin{pmatrix}
/// \alpha_r+i \alpha_i & -\beta_r+i \beta_i \\\\
/// \beta_r+i \beta_i & \alpha_r-i\alpha_i
/// \end{pmatrix} $$
///
/// These gates can be parametrized by five real parameters:
///
/// * `alpha_r` - The real part $ \alpha_r $ of the on-diagonal elements of the single-qubit unitary.
/// * `alpha_i` - The imaginary part $ \alpha_i $ of the on-diagonal elements of the single-qubit unitary.
/// * `beta_r` - The real part $ \beta_r $ of the off-diagonal elements of the single-qubit unitary.
/// * `beta_i` - The imaginary part $ \beta_i $ of the off-diagonal elements of the single-qubit unitary.
/// * `global_phase` - The global phase $ \phi $ of the single-qubit unitary.
///
/// These are the single qubit gates that are performed in the Circuit(), and are then translated
/// to quantum hardware through the relevant backend. Two-qubit gates are also available
/// (see roqoqo/src/operations/two_qubit_gate_operations.rs).
///
/// # Example
/// ```
/// use qoqo_calculator::CalculatorFloat;
/// use roqoqo::operations::{OperateSingleQubitGate, PauliX};
/// use std::f64::consts::PI;
///
/// let paulix = PauliX::new(0);
///
/// assert_eq!(paulix.alpha_r(), 0.0.into());
/// assert_eq!(paulix.alpha_i(), 0.0.into());
/// assert_eq!(paulix.beta_r(), 0.0.into());
/// assert_eq!(paulix.beta_i(), CalculatorFloat::from(-1.0));
/// assert_eq!(paulix.global_phase(), ((PI) / 2.0).into());
/// ```
///
pub trait OperateSingleQubitGate:
    Operate
    + OperateGate
    + InvolveQubits
    + Substitute
    + OperateSingleQubit
    + Clone
    + PartialEq
    + OperateSingleQubit
    + std::fmt::Debug
{
    /// Returns alpha_r parameter of operation.
    ///
    /// # Returns
    ///
    /// * `alpha_r` - The real part $\alpha_r$ of the on-diagonal elements of the single-qubit unitary matrix.
    fn alpha_r(&self) -> CalculatorFloat;

    /// Returns alpha_i parameter of operation.
    ///
    /// # Returns
    ///
    /// * `alpha_i` - The imaginary part $ \alpha_i $ of the on-diagonal elements of the single-qubit unitary matrix.
    fn alpha_i(&self) -> CalculatorFloat;

    /// Returns beta_r parameter of operation.
    ///
    /// # Returns
    ///
    /// * `beta_r` - The real part $ \beta_r $ of the off-diagonal elements of the single-qubit unitary matrix.
    fn beta_r(&self) -> CalculatorFloat;

    /// Returns beta_i parameter of operation.
    ///
    /// # Returns
    ///
    /// * `beta_i` -  imaginary part $ \beta_i $ of the off-diagonal elements of the single-qubit unitary matrix.
    fn beta_i(&self) -> CalculatorFloat;

    /// Returns global_phase parameter of operation.
    ///
    /// # Returns
    ///
    /// * `global_phase` - The global phase phi $ \phi $ of the single-qubit unitary.
    fn global_phase(&self) -> CalculatorFloat;

    /// Multiplies two compatible operations implementing OperateSingleQubitGate.
    ///
    /// Does not consume the two operations being multiplied.
    /// Only Operations
    ///
    /// # Arguments:
    ///
    /// * `other` - An Operation implementing [OperateSingleQubitGate].
    ///
    /// # Example
    /// ```
    /// use roqoqo::operations::{RotateZ, RotateX};
    /// use roqoqo::prelude::*;
    /// use qoqo_calculator::CalculatorFloat;
    ///
    /// let gate1 =  RotateZ::new(0, CalculatorFloat::from(1));
    /// let gate2 =  RotateX::new(0, CalculatorFloat::from(1));
    /// let multiplied = gate1.mul(&gate2).unwrap();
    /// ```
    fn mul<T>(&self, other: &T) -> Result<SingleQubitGate, RoqoqoError>
    where
        T: OperateSingleQubitGate,
    {
        if self.qubit() != other.qubit() {
            return Err(RoqoqoError::MultiplicationIncompatibleQubits {
                squbit: *self.qubit(),
                oqubit: *other.qubit(),
            });
        }
        let alpha = CalculatorComplex::new(self.alpha_r(), self.alpha_i());
        let beta = CalculatorComplex::new(self.beta_r(), self.beta_i());
        let oalpha = CalculatorComplex::new(other.alpha_r(), other.alpha_i());
        let obeta = CalculatorComplex::new(other.beta_r(), other.beta_i());
        let new_alpha = alpha.clone() * &oalpha - beta.conj() * &obeta;
        let new_beta = beta * oalpha + obeta * alpha.conj();
        Ok(SingleQubitGate::new(
            *other.qubit(),
            new_alpha.re,
            new_alpha.im,
            new_beta.re,
            new_beta.im,
            self.global_phase() + other.global_phase(),
        ))
    }
}

/// Trait for all Operations operating on or affecting exactly two qubits.
///
/// # Example
/// ```
/// use roqoqo::operations::{ISwap, KakDecomposition, OperateTwoQubitGate};
/// use qoqo_calculator::CalculatorFloat;
/// let iswap = ISwap::new(0, 1);
///
/// assert_eq!(iswap.kak_decomposition().circuit_before, None);
/// assert_eq!(iswap.kak_decomposition().circuit_after, None);
/// assert_eq!(iswap.kak_decomposition().global_phase, CalculatorFloat::ZERO);
/// assert_eq!(iswap.kak_decomposition().k_vector, [CalculatorFloat::FRAC_PI_4, CalculatorFloat::FRAC_PI_4, CalculatorFloat::ZERO]);
/// ```
///
pub trait OperateTwoQubitGate:
    Operate + OperateGate + OperateTwoQubit + InvolveQubits + Substitute + Clone + PartialEq
{
    /// Returns [KakDecomposition] of two qubit gate.
    fn kak_decomposition(&self) -> KakDecomposition;
}

/// Trait for all Operations operating on or affecting more than two qubits.
///
/// # Example
/// ```
/// use roqoqo::operations::{CNOT, Hadamard, MultiQubitMS, OperateMultiQubitGate, RotateZ};
/// use roqoqo::Circuit;
/// use qoqo_calculator::CalculatorFloat;
///
/// let multi_ms = MultiQubitMS::new(vec![0, 1, 2], CalculatorFloat::from(1.0));
/// let mut circuit = Circuit::new();
/// circuit += Hadamard::new(0);
/// circuit += Hadamard::new(1);
/// circuit += Hadamard::new(2);
/// circuit += CNOT::new(0, 1);
/// circuit += CNOT::new(1, 2);
/// circuit += RotateZ::new(2, CalculatorFloat::from(0.5));
/// circuit += CNOT::new(1, 2);
/// circuit += CNOT::new(0, 1);
/// circuit += Hadamard::new(0);
/// circuit += Hadamard::new(1);
/// circuit += Hadamard::new(2);
///
/// assert_eq!(multi_ms.circuit(), circuit);
/// ```
///
pub trait OperateMultiQubitGate:
    Operate + OperateGate + OperateMultiQubit + InvolveQubits + Substitute + Clone + PartialEq
{
    /// Returns a decomposition of the multi-qubit operation using a circuit with two-qubit-operations.
    fn circuit(&self) -> crate::Circuit;
}

// Implementing DynOperation for storing dynamic operations from extern crates in trait object

#[cfg(feature = "dynamic")]
/// A wrapper for Operate trait objects.
///
/// This wrapper struct can be used to insert Operate trait objects in a circuit.
/// The intended use case is to store structs from an external crate that implement Operate,
/// in a circuit.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct DynOperation(Box<dyn Operate>);

#[cfg(feature = "dynamic")]
#[cfg_attr(feature = "dynamic", typetag::serde)]
impl Operate for DynOperation {
    fn tags(&self) -> &'static [&'static str] {
        self.0.tags()
    }
    fn hqslang(&self) -> &'static str {
        self.0.hqslang()
    }
    fn is_parametrized(&self) -> bool {
        self.0.is_parametrized()
    }
}
#[cfg(feature = "dynamic")]
impl InvolveQubits for DynOperation {
    fn involved_qubits(&self) -> InvolvedQubits {
        self.0.involved_qubits()
    }
}
#[cfg(feature = "dynamic")]
/// Implements [Substitute] trait allowing to replace symbolic parameters and to perform qubit mappings.
impl Substitute for DynOperation {
    fn substitute_parameters(&self, calculator: &mut Calculator) -> Result<Self, RoqoqoError> {
        Ok(DynOperation(self.0.substitute_parameters_dyn(calculator)?))
    }
    fn remap_qubits(&self, mapping: &HashMap<usize, usize>) -> Result<Self, RoqoqoError> {
        Ok(DynOperation(self.0.remap_qubits_dyn(mapping)?))
    }
}
#[cfg(feature = "dynamic")]
impl PartialEq for DynOperation {
    fn eq(&self, other: &Self) -> bool {
        self.0.hqslang() == other.0.hqslang()
    }
}