1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
use std::sync::atomic::Ordering;
use std::sync::atomic::{AtomicBool, AtomicUsize};
use std::sync::mpsc::Receiver;
use std::sync::Arc;
use std::sync::Mutex;
use std::time::Duration;

use play_raw;
use queue;
use source::Done;
use Device;
use Sample;
use Source;

/// Handle to an device that outputs sounds.
///
/// Dropping the `Sink` stops all sounds. You can use `detach` if you want the sounds to continue
/// playing.
pub struct Sink {
    queue_tx: Arc<queue::SourcesQueueInput<f32>>,
    sleep_until_end: Mutex<Option<Receiver<()>>>,

    controls: Arc<Controls>,
    sound_count: Arc<AtomicUsize>,

    detached: bool,
}

struct Controls {
    pause: AtomicBool,
    volume: Mutex<f32>,
    stopped: AtomicBool,
}

impl Sink {
    /// Builds a new `Sink`, beginning playback on a Device.
    #[inline]
    pub fn new(device: &Device) -> Sink {
        let (sink, queue_rx) = Sink::new_idle();
        play_raw(device, queue_rx);
        sink
    }

    /// Builds a new `Sink`.
    #[inline]
    pub fn new_idle() -> (Sink, queue::SourcesQueueOutput<f32>) {
        let (queue_tx, queue_rx) = queue::queue(true);

        let sink = Sink {
            queue_tx: queue_tx,
            sleep_until_end: Mutex::new(None),
            controls: Arc::new(Controls {
                pause: AtomicBool::new(false),
                volume: Mutex::new(1.0),
                stopped: AtomicBool::new(false),
            }),
            sound_count: Arc::new(AtomicUsize::new(0)),
            detached: false,
        };
        (sink, queue_rx)
    }

    /// Appends a sound to the queue of sounds to play.
    #[inline]
    pub fn append<S>(&self, source: S)
    where
        S: Source + Send + 'static,
        S::Item: Sample,
        S::Item: Send,
    {
        let controls = self.controls.clone();

        let source = source
            .pausable(false)
            .amplify(1.0)
            .stoppable()
            .periodic_access(Duration::from_millis(5), move |src| {
                if controls.stopped.load(Ordering::SeqCst) {
                    src.stop();
                } else {
                    src.inner_mut().set_factor(*controls.volume.lock().unwrap());
                    src.inner_mut()
                        .inner_mut()
                        .set_paused(controls.pause.load(Ordering::SeqCst));
                }
            })
            .convert_samples();
        self.sound_count.fetch_add(1, Ordering::Relaxed);
        let source = Done::new(source, self.sound_count.clone());
        *self.sleep_until_end.lock().unwrap() = Some(self.queue_tx.append_with_signal(source));
    }

    /// Gets the volume of the sound.
    ///
    /// The value `1.0` is the "normal" volume (unfiltered input). Any value other than 1.0 will
    /// multiply each sample by this value.
    #[inline]
    pub fn volume(&self) -> f32 {
        *self.controls.volume.lock().unwrap()
    }

    /// Changes the volume of the sound.
    ///
    /// The value `1.0` is the "normal" volume (unfiltered input). Any value other than `1.0` will
    /// multiply each sample by this value.
    #[inline]
    pub fn set_volume(&self, value: f32) {
        *self.controls.volume.lock().unwrap() = value;
    }

    /// Resumes playback of a paused sink.
    ///
    /// No effect if not paused.
    #[inline]
    pub fn play(&self) {
        self.controls.pause.store(false, Ordering::SeqCst);
    }

    /// Pauses playback of this sink.
    ///
    /// No effect if already paused.
    ///
    /// A paused sink can be resumed with `play()`.
    pub fn pause(&self) {
        self.controls.pause.store(true, Ordering::SeqCst);
    }

    /// Gets if a sink is paused
    ///
    /// Sinks can be paused and resumed using `pause()` and `play()`. This returns `true` if the
    /// sink is paused.
    pub fn is_paused(&self) -> bool {
        self.controls.pause.load(Ordering::SeqCst)
    }

    /// Stops the sink by emptying the queue.
    #[inline]
    pub fn stop(&self) {
        self.controls.stopped.store(true, Ordering::SeqCst);
    }

    /// Destroys the sink without stopping the sounds that are still playing.
    #[inline]
    pub fn detach(mut self) {
        self.detached = true;
    }

    /// Sleeps the current thread until the sound ends.
    #[inline]
    pub fn sleep_until_end(&self) {
        if let Some(sleep_until_end) = self.sleep_until_end.lock().unwrap().take() {
            let _ = sleep_until_end.recv();
        }
    }

    /// Returns true if this sink has no more sounds to play.
    #[inline]
    pub fn empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the number of sounds currently in the queue.
    #[inline]
    pub fn len(&self) -> usize {
        self.sound_count.load(Ordering::Relaxed)
    }
}

impl Drop for Sink {
    #[inline]
    fn drop(&mut self) {
        self.queue_tx.set_keep_alive_if_empty(false);

        if !self.detached {
            self.controls.stopped.store(true, Ordering::Relaxed);
        }
    }
}


#[cfg(test)]
mod tests {
    use buffer::SamplesBuffer;
    use source::Source;
    use sink::Sink;

    #[test]
    fn test_pause_and_stop() {
        let (sink, mut queue_rx) = Sink::new_idle();

        // assert_eq!(queue_rx.next(), Some(0.0));

        let v = vec![10i16, -10, 20, -20, 30, -30];

        // Low rate to ensure immediate control.
        sink.append(SamplesBuffer::new(1, 1, v.clone()));
        let mut src = SamplesBuffer::new(1, 1, v.clone()).convert_samples();

        assert_eq!(queue_rx.next(), src.next());
        assert_eq!(queue_rx.next(), src.next());

        sink.pause();

        assert_eq!(queue_rx.next(), Some(0.0));

        sink.play();

        assert_eq!(queue_rx.next(), src.next());
        assert_eq!(queue_rx.next(), src.next());

        sink.stop();

        assert_eq!(queue_rx.next(), Some(0.0));

        assert_eq!(sink.empty(), true);
    }

    #[test]
    fn test_volume() {
        let (sink, mut queue_rx) = Sink::new_idle();

        let v = vec![10i16, -10, 20, -20, 30, -30];

        // High rate to avoid immediate control.
        sink.append(SamplesBuffer::new(2, 44100, v.clone()));
        let src = SamplesBuffer::new(2, 44100, v.clone()).convert_samples();

        let mut src = src.amplify(0.5);
        sink.set_volume(0.5);

        for _ in 0..v.len() {
            assert_eq!(queue_rx.next(), src.next());
        }
    }
}