1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
use std::io::Write;

use rustc_serialize;

use rmp::encode::{write_array_len, write_bool, write_f32, write_f64, write_map_len, write_nil,
                  write_sint, write_uint, write_str};

use rmp::encode::ValueWriteError;

pub type Error = ValueWriteError;

/// Represents MessagePack serialization implementation.
///
/// # Note
///
/// MessagePack has no specification about how to encode variant types. Thus we are free to do
/// whatever we want, so the given chose may be not ideal for you.
///
/// Every Rust variant value can be represented as a tuple of index and a value.
///
/// All instances of `ErrorKind::Interrupted` are handled by this function and the underlying
/// operation is retried.
// TODO: Docs. Examples, variant encoding policy.
pub struct Encoder<'a> {
    wr: &'a mut Write,
}

impl<'a> Encoder<'a> {
    /// Creates a new MessagePack encoder whose output will be written to the writer specified.
    pub fn new(wr: &'a mut Write) -> Encoder<'a> {
        Encoder {
            wr: wr,
        }
    }
}

impl<'a> rustc_serialize::Encoder for Encoder<'a> {
    type Error = Error;

    fn emit_nil(&mut self) -> Result<(), Error> {
        write_nil(&mut self.wr).map_err(|err| ValueWriteError::InvalidMarkerWrite(err))
    }

    fn emit_bool(&mut self, val: bool) -> Result<(), Error> {
        write_bool(&mut self.wr, val).map_err(|err| ValueWriteError::InvalidMarkerWrite(err))
    }

    fn emit_u8(&mut self, val: u8) -> Result<(), Error> {
        self.emit_u64(val as u64)
    }

    fn emit_u16(&mut self, val: u16) -> Result<(), Error> {
        self.emit_u64(val as u64)
    }

    fn emit_u32(&mut self, val: u32) -> Result<(), Error> {
        self.emit_u64(val as u64)
    }

    fn emit_u64(&mut self, val: u64) -> Result<(), Error> {
        try!(write_uint(&mut self.wr, val));
        Ok(())
    }

    fn emit_usize(&mut self, val: usize) -> Result<(), Error> {
        self.emit_u64(val as u64)
    }

    fn emit_i8(&mut self, val: i8) -> Result<(), Error> {
        self.emit_i64(val as i64)
    }

    fn emit_i16(&mut self, val: i16) -> Result<(), Error> {
        self.emit_i64(val as i64)
    }

    fn emit_i32(&mut self, val: i32) -> Result<(), Error> {
        self.emit_i64(val as i64)
    }

    fn emit_i64(&mut self, val: i64) -> Result<(), Error> {
        try!(write_sint(&mut self.wr, val));
        Ok(())
    }

    fn emit_isize(&mut self, val: isize) -> Result<(), Error> {
        self.emit_i64(val as i64)
    }

    fn emit_f32(&mut self, val: f32) -> Result<(), Error> {
        write_f32(&mut self.wr, val).map_err(From::from)
    }

    fn emit_f64(&mut self, val: f64) -> Result<(), Error> {
        write_f64(&mut self.wr, val).map_err(From::from)
    }

    // TODO: The implementation involves heap allocation and is unstable.
    fn emit_char(&mut self, val: char) -> Result<(), Error> {
        // A char encoded as UTF-8 takes 4 bytes at most.
        let mut buf = [0; 4];
        self.emit_str(val.encode_utf8(&mut buf))
    }

    fn emit_str(&mut self, val: &str) -> Result<(), Error> {
        write_str(&mut self.wr, val).map_err(From::from)
    }

    /// Encodes and attempts to write the enum value into the Write.
    ///
    /// Currently we encode variant types as a tuple of id with array of args, like: [id, [args...]]
    fn emit_enum<F>(&mut self, _name: &str, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        // Mark that we want to encode a variant type.
        try!(write_array_len(&mut self.wr, 2));

        // Delegate to the encoder of a concrete value.
        f(self)
    }

    /// Encodes and attempts to write a concrete variant value.
    fn emit_enum_variant<F>(&mut self, _name: &str, id: usize, len: usize, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        // Encode a value position...
        try!(self.emit_usize(id));

        // ... and its arguments length.
        try!(write_array_len(&mut self.wr, len as u32));

        // Delegate to the encoder of a value args.
        f(self)
    }

    /// Encodes and attempts to write a concrete variant value arguments.
    fn emit_enum_variant_arg<F>(&mut self, _idx: usize, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        f(self)
    }

    fn emit_enum_struct_variant<F>(&mut self, _name: &str, _id: usize, _len: usize, _f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        unimplemented!()
    }

    fn emit_enum_struct_variant_field<F>(&mut self, _name: &str, _idx: usize, _f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        unimplemented!()
    }

    fn emit_struct<F>(&mut self, _name: &str, len: usize, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        self.emit_tuple(len, f)
    }

    fn emit_struct_field<F>(&mut self, _name: &str, _idx: usize, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        f(self)
    }

    fn emit_tuple<F>(&mut self, len: usize, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        try!(write_array_len(&mut self.wr, len as u32));
        f(self)
    }

    fn emit_tuple_arg<F>(&mut self, _idx: usize, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        f(self)
    }

    fn emit_tuple_struct<F>(&mut self, _name: &str, len: usize, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        self.emit_tuple(len, f)
    }

    fn emit_tuple_struct_arg<F>(&mut self, _idx: usize, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        f(self)
    }

    fn emit_option<F>(&mut self, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        f(self)
    }

    fn emit_option_none(&mut self) -> Result<(), Error> {
        self.emit_nil()
    }

    fn emit_option_some<F>(&mut self, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        f(self)
    }

    // TODO: Check len, overflow is possible.
    fn emit_seq<F>(&mut self, len: usize, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        try!(write_array_len(&mut self.wr, len as u32));
        f(self)
    }

    fn emit_seq_elt<F>(&mut self, _idx: usize, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        f(self)
    }

    fn emit_map<F>(&mut self, len: usize, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        try!(write_map_len(&mut self.wr, len as u32));
        f(self)
    }

    fn emit_map_elt_key<F>(&mut self, _idx: usize, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        f(self)
    }

    fn emit_map_elt_val<F>(&mut self, _idx: usize, f: F) -> Result<(), Error>
        where F: FnOnce(&mut Self) -> Result<(), Error>
    {
        f(self)
    }
}