1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
//! Validation implementation for BTreeMap.

use super::{
    ArchivedBTreeMap, ClassifiedNode, InnerNode, InnerNodeEntry, LeafNode, LeafNodeEntry, Node,
    NodeHeader, MIN_ENTRIES_PER_INNER_NODE, MIN_ENTRIES_PER_LEAF_NODE,
};
use crate::{
    rel_ptr::RelPtr,
    validation::{ArchiveContext, LayoutRaw},
    Archived, Fallible,
};
use bytecheck::{CheckBytes, Error};
use core::{
    alloc::{Layout, LayoutError},
    convert::{Infallible, TryFrom},
    fmt,
    hint::unreachable_unchecked,
    ptr,
};
use ptr_meta::Pointee;

impl<K, C> CheckBytes<C> for InnerNodeEntry<K>
where
    K: CheckBytes<C>,
    C: ArchiveContext + ?Sized,
    C::Error: Error,
{
    type Error = K::Error;

    #[inline]
    unsafe fn check_bytes<'a>(
        value: *const Self,
        context: &mut C,
    ) -> Result<&'a Self, Self::Error> {
        RelPtr::manual_check_bytes(ptr::addr_of!((*value).ptr), context)
            .unwrap_or_else(|_| core::hint::unreachable_unchecked());
        K::check_bytes(ptr::addr_of!((*value).key), context)?;

        Ok(&*value)
    }
}

/// An error that can occur while checking a leaf node entry.
#[derive(Debug)]
pub enum LeafNodeEntryError<K, V> {
    /// An error occurred while checking the entry's key.
    KeyCheckError(K),
    /// An error occurred while checking the entry's value.
    ValueCheckError(V),
}

impl<K: fmt::Display, V: fmt::Display> fmt::Display for LeafNodeEntryError<K, V> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            LeafNodeEntryError::KeyCheckError(e) => write!(f, "key check error: {}", e),
            LeafNodeEntryError::ValueCheckError(e) => write!(f, "value check error: {}", e),
        }
    }
}

#[cfg(feature = "std")]
const _: () = {
    use std::error::Error;

    impl<K: Error + 'static, V: Error + 'static> Error for LeafNodeEntryError<K, V> {
        fn source(&self) -> Option<&(dyn Error + 'static)> {
            match self {
                Self::KeyCheckError(e) => Some(e as &dyn Error),
                Self::ValueCheckError(e) => Some(e as &dyn Error),
            }
        }
    }
};

impl<K, V, C> CheckBytes<C> for LeafNodeEntry<K, V>
where
    K: CheckBytes<C>,
    V: CheckBytes<C>,
    C: Fallible + ?Sized,
    C::Error: Error,
{
    type Error = LeafNodeEntryError<K::Error, V::Error>;

    #[inline]
    unsafe fn check_bytes<'a>(
        value: *const Self,
        context: &mut C,
    ) -> Result<&'a Self, Self::Error> {
        K::check_bytes(ptr::addr_of!((*value).key), context)
            .map_err(LeafNodeEntryError::KeyCheckError)?;
        V::check_bytes(ptr::addr_of!((*value).value), context)
            .map_err(LeafNodeEntryError::ValueCheckError)?;
        Ok(&*value)
    }
}

/// Errors that can occur while checking an archived B-tree.
#[derive(Debug)]
pub enum ArchivedBTreeMapError<K, V, C> {
    /// An error occurred while checking the bytes of a key
    KeyCheckError(K),
    /// An error occurred while checking the bytes of a value
    ValueCheckError(V),
    /// The number of entries in the inner node is less than the minimum number of entries required
    TooFewInnerNodeEntries(usize),
    /// The number of entries in the leaf node is less than the minimum number of entries
    TooFewLeafNodeEntries(usize),
    /// An error occurred while checking the entries of an inner node
    CheckInnerNodeEntryError {
        /// The index of the inner node entry
        index: usize,
        /// The inner error that occurred
        inner: K,
    },
    /// An error occurred while checking the entries of a leaf node
    CheckLeafNodeEntryError {
        /// The index of the leaf node entry
        index: usize,
        /// The inner error that occurred
        inner: LeafNodeEntryError<K, V>,
    },
    /// The size of an inner node was invalid
    InvalidNodeSize(usize),
    /// The child of an inner node had a first key that did not match the inner node's key
    MismatchedInnerChildKey,
    /// The leaf level of the B-tree contained an inner node
    InnerNodeInLeafLevel,
    /// The leaves of the B-tree were not all located at the same depth
    InvalidLeafNodeDepth {
        /// The depth of the first leaf node in the tree
        expected: usize,
        /// The depth of the invalid leaf node
        actual: usize,
    },
    /// A leaf node did not contain entries in sorted order
    UnsortedLeafNodeEntries,
    /// A leaf node is not linked after a node despite being the next leaf node
    UnlinkedLeafNode,
    /// A leaf node with lesser keys is linked after a leaf node with greater keys
    UnsortedLeafNode,
    /// The forward pointer of the last leaf did not have an offset of 0
    LastLeafForwardPointerNotNull,
    /// The number of entries the B-tree claims to have does not match the actual number of entries
    LengthMismatch {
        /// The number of entries the B-tree claims to have
        expected: usize,
        /// The actual number of entries in the B-tree
        actual: usize,
    },
    /// The keys for an inner node were incorrect
    IncorrectChildKey,
    /// An context error occurred
    ContextError(C),
}

impl<K, V, C> From<Infallible> for ArchivedBTreeMapError<K, V, C> {
    fn from(_: Infallible) -> Self {
        unsafe { core::hint::unreachable_unchecked() }
    }
}

impl<K, V, C> fmt::Display for ArchivedBTreeMapError<K, V, C>
where
    K: fmt::Display,
    V: fmt::Display,
    C: fmt::Display,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::KeyCheckError(e) => write!(f, "key check error: {}", e),
            Self::ValueCheckError(e) => write!(f, "value check error: {}", e),
            Self::TooFewInnerNodeEntries(n) => write!(
                f,
                "too few inner node entries (expected at least {}): {}",
                MIN_ENTRIES_PER_INNER_NODE, n
            ),
            Self::TooFewLeafNodeEntries(n) => write!(
                f,
                "too few leaf node entries (expected at least {}): {}",
                MIN_ENTRIES_PER_LEAF_NODE, n,
            ),
            Self::CheckInnerNodeEntryError { index, inner } => write!(
                f,
                "inner node entry check error: index {}, error {}",
                index, inner
            ),
            Self::CheckLeafNodeEntryError { index, inner } => write!(
                f,
                "leaf node entry check error: index {}, error {}",
                index, inner
            ),
            Self::InvalidNodeSize(n) => write!(f, "invalid node size: {}", n),
            Self::MismatchedInnerChildKey => write!(f, "mismatched inner child key"),
            Self::InnerNodeInLeafLevel => write!(f, "inner node in leaf level"),
            Self::InvalidLeafNodeDepth { expected, actual } => write!(
                f,
                "expected leaf node depth {} but found leaf node depth {}",
                expected, actual,
            ),
            Self::UnsortedLeafNodeEntries => write!(f, "leaf node contains keys in unsorted order"),
            Self::UnlinkedLeafNode => write!(f, "leaf nodes are not linked in the sorted order"),
            Self::UnsortedLeafNode => write!(f, "leaf nodes are not linked in sorted order"),
            Self::LastLeafForwardPointerNotNull => {
                write!(f, "the forward pointer of the last leaf was not null")
            }
            Self::LengthMismatch { expected, actual } => write!(
                f,
                "expected {} entries but there were actually {} entries",
                expected, actual,
            ),
            Self::IncorrectChildKey => write!(f, "incorrect child key in inner node"),
            Self::ContextError(e) => write!(f, "context error: {}", e),
        }
    }
}

#[cfg(feature = "std")]
const _: () = {
    use std::error::Error;

    impl<K, V, C> Error for ArchivedBTreeMapError<K, V, C>
    where
        K: Error + 'static,
        V: Error + 'static,
        C: Error + 'static,
    {
        fn source(&self) -> Option<&(dyn Error + 'static)> {
            match self {
                Self::KeyCheckError(e) => Some(e as &dyn Error),
                Self::ValueCheckError(e) => Some(e as &dyn Error),
                Self::TooFewInnerNodeEntries(_) => None,
                Self::TooFewLeafNodeEntries(_) => None,
                Self::CheckInnerNodeEntryError { inner, .. } => Some(inner as &dyn Error),
                Self::CheckLeafNodeEntryError { inner, .. } => Some(inner as &dyn Error),
                Self::InvalidNodeSize(_) => None,
                Self::MismatchedInnerChildKey => None,
                Self::InnerNodeInLeafLevel => None,
                Self::InvalidLeafNodeDepth { .. } => None,
                Self::UnsortedLeafNodeEntries => None,
                Self::UnlinkedLeafNode => None,
                Self::UnsortedLeafNode => None,
                Self::LastLeafForwardPointerNotNull => None,
                Self::LengthMismatch { .. } => None,
                Self::IncorrectChildKey => None,
                Self::ContextError(e) => Some(e as &dyn Error),
            }
        }
    }
};

impl<T> LayoutRaw for Node<[T]> {
    fn layout_raw(metadata: <Self as Pointee>::Metadata) -> Result<Layout, LayoutError> {
        let result = Layout::new::<NodeHeader>()
            .extend(Layout::array::<T>(metadata).unwrap())?
            .0;
        #[cfg(not(feature = "strict"))]
        {
            Ok(result)
        }
        #[cfg(feature = "strict")]
        {
            Ok(result.pad_to_align())
        }
    }
}

type ABTMError<K, V, C> = ArchivedBTreeMapError<
    <K as CheckBytes<C>>::Error,
    <V as CheckBytes<C>>::Error,
    <C as Fallible>::Error,
>;

impl NodeHeader {
    #[inline]
    unsafe fn manual_check_bytes<'a, K, V, C>(
        value: *const Self,
        context: &mut C,
    ) -> Result<&'a Self, ABTMError<K, V, C>>
    where
        K: CheckBytes<C>,
        V: CheckBytes<C>,
        C: ArchiveContext + ?Sized,
        C::Error: Error,
    {
        let raw_node = Self::manual_check_header(value, context)
            .map_err(ArchivedBTreeMapError::ContextError)?;

        let node_layout = if raw_node.is_inner() {
            InnerNode::<K>::layout_raw(ptr_meta::metadata(raw_node.classify_inner_ptr::<K>()))
                .map_err(C::wrap_layout_error)
                .map_err(ArchivedBTreeMapError::ContextError)?
        } else {
            LeafNode::<K, V>::layout_raw(ptr_meta::metadata(raw_node.classify_leaf_ptr::<K, V>()))
                .map_err(C::wrap_layout_error)
                .map_err(ArchivedBTreeMapError::ContextError)?
        };

        context
            .bounds_check_subtree_ptr_layout((raw_node as *const NodeHeader).cast(), &node_layout)
            .map_err(ArchivedBTreeMapError::ContextError)?;

        Self::manual_check_contents::<K, V, C>(raw_node, context)?;

        Ok(raw_node)
    }

    #[inline]
    unsafe fn manual_check_header<'a, C>(
        value: *const Self,
        context: &mut C,
    ) -> Result<&'a Self, C::Error>
    where
        C: ArchiveContext + ?Sized,
        C::Error: Error,
    {
        CheckBytes::check_bytes(ptr::addr_of!((*value).meta), context).map_err(
            // SAFETY: Infallible cannot exist
            |_: Infallible| unreachable_unchecked(),
        )?;
        CheckBytes::check_bytes(ptr::addr_of!((*value).size), context).map_err(
            // SAFETY: Infallible cannot exist
            |_: Infallible| unreachable_unchecked(),
        )?;
        RelPtr::manual_check_bytes(ptr::addr_of!((*value).ptr), context).map_err(
            // SAFETY: Infallible cannot exist
            |_: Infallible| unreachable_unchecked(),
        )?;

        // All the fields have been checked and this is a valid RawNode
        Ok(&*value)
    }

    #[inline]
    unsafe fn manual_check_contents<K, V, C>(
        raw_node: &Self,
        context: &mut C,
    ) -> Result<(), ABTMError<K, V, C>>
    where
        K: CheckBytes<C>,
        V: CheckBytes<C>,
        C: ArchiveContext + ?Sized,
        C::Error: Error,
    {
        // Now that the fields have been checked, we can start checking the specific subtype
        let root = (raw_node as *const Self).cast();
        let size = from_archived!(raw_node.size) as usize;
        let offset =
            -isize::try_from(size).map_err(|_| ArchivedBTreeMapError::InvalidNodeSize(size))?;
        let start = context
            .check_ptr(root, offset, ())
            .map_err(ArchivedBTreeMapError::ContextError)?;

        // Push a new suffix range and check the inner or leaf part
        let range = context
            .push_suffix_subtree_range(start, root)
            .map_err(ArchivedBTreeMapError::ContextError)?;
        if raw_node.is_inner() {
            InnerNode::manual_check_bytes::<V, C>(raw_node.classify_inner_ptr::<K>(), context)?;
        } else {
            CheckBytes::check_bytes(raw_node.classify_leaf_ptr::<K, V>(), context)?;
        }
        context
            .pop_suffix_range(range)
            .map_err(ArchivedBTreeMapError::ContextError)?;

        Ok(())
    }
}

impl<K> InnerNode<K> {
    #[allow(clippy::type_complexity)]
    fn verify_integrity<'a, V, C>(
        &'a self,
    ) -> Result<&K, ArchivedBTreeMapError<K::Error, V::Error, C::Error>>
    where
        K: CheckBytes<C> + PartialEq,
        V: CheckBytes<C> + 'a,
        C: Fallible + ?Sized,
    {
        for entry in self.tail.iter() {
            let child = unsafe { &*entry.ptr.as_ptr() }.classify::<K, V>();
            let first_key = match child {
                ClassifiedNode::Inner(c) => c.verify_integrity::<V, C>()?,
                ClassifiedNode::Leaf(c) => &c.tail[0].key,
            };
            if !entry.key.eq(first_key) {
                return Err(ArchivedBTreeMapError::IncorrectChildKey);
            }
        }

        let least_child = unsafe { &*self.header.ptr.as_ptr() }.classify::<K, V>();
        let first_key = match least_child {
            ClassifiedNode::Inner(c) => c.verify_integrity::<V, C>()?,
            ClassifiedNode::Leaf(c) => &c.tail[0].key,
        };

        Ok(first_key)
    }

    #[inline]
    unsafe fn manual_check_bytes<'a, V, C>(
        value: *const Self,
        context: &mut C,
    ) -> Result<&'a Self, ABTMError<K, V, C>>
    where
        K: CheckBytes<C>,
        V: CheckBytes<C>,
        C: ArchiveContext + ?Sized,
        C::Error: Error,
    {
        // meta, size, and ptr have already been checked by the check_bytes for RawNode
        let len = ptr_meta::metadata(value);

        // Each inner node actually contains one more entry that the length indicates (the least
        // child pointer)
        if len + 1 < MIN_ENTRIES_PER_INNER_NODE {
            return Err(ArchivedBTreeMapError::TooFewInnerNodeEntries(len + 1));
        }

        // The subtree range has already been set up for us so we can just check our tail
        let tail_ptr = ptr::addr_of!((*value).tail) as *const InnerNodeEntry<K>;
        for index in (0..len).rev() {
            CheckBytes::check_bytes(tail_ptr.add(index), context).map_err(|inner| {
                ArchivedBTreeMapError::CheckInnerNodeEntryError { index, inner }
            })?;
        }

        Ok(&*value)
    }
}

impl<K, V, C> CheckBytes<C> for LeafNode<K, V>
where
    K: CheckBytes<C>,
    V: CheckBytes<C>,
    C: ArchiveContext + ?Sized,
    C::Error: Error,
{
    type Error = ArchivedBTreeMapError<K::Error, V::Error, C::Error>;

    #[inline]
    unsafe fn check_bytes<'a>(
        value: *const Self,
        context: &mut C,
    ) -> Result<&'a Self, Self::Error> {
        // meta, size, and ptr have already been checked by the check_bytes for RawNode
        let len = ptr_meta::metadata(value);

        if len < MIN_ENTRIES_PER_LEAF_NODE {
            return Err(ArchivedBTreeMapError::TooFewLeafNodeEntries(len));
        }

        // The subtree range has already been set up for us so we can just check our tail
        let tail_ptr = ptr::addr_of!((*value).tail) as *const LeafNodeEntry<K, V>;
        for index in (0..len).rev() {
            CheckBytes::check_bytes(tail_ptr.add(index), context)
                .map_err(|inner| ArchivedBTreeMapError::CheckLeafNodeEntryError { index, inner })?;
        }

        Ok(&*value)
    }
}

#[cfg(feature = "alloc")]
const _: () = {
    #[cfg(not(feature = "std"))]
    use alloc::collections::VecDeque;
    #[cfg(feature = "std")]
    use std::collections::VecDeque;

    impl<K, V, C> CheckBytes<C> for ArchivedBTreeMap<K, V>
    where
        K: CheckBytes<C> + Ord,
        V: CheckBytes<C>,
        C: ArchiveContext + ?Sized,
        C::Error: Error,
    {
        type Error = ArchivedBTreeMapError<K::Error, V::Error, C::Error>;

        unsafe fn check_bytes<'a>(
            value: *const Self,
            context: &mut C,
        ) -> Result<&'a Self, Self::Error> {
            let len = from_archived!(*Archived::<usize>::check_bytes(
                ptr::addr_of!((*value).len),
                context,
            )?) as usize;

            if len > 0 {
                let root_rel_ptr =
                    RelPtr::manual_check_bytes(ptr::addr_of!((*value).root), context)?;

                // Walk all the inner nodes, claim their memory, and check their contents
                let mut nodes = VecDeque::new();
                let root_ptr = context
                    .check_subtree_rel_ptr(root_rel_ptr)
                    .map_err(ArchivedBTreeMapError::ContextError)?;

                // Before checking all the nodes, we have to push an additional prefix subtree with
                // the root node
                // Otherwise, when the suffix subtree of the root node is popped it will remove any
                // trailing suffix space that should be checked by subsequent fields
                let root = NodeHeader::manual_check_header(root_ptr, context)
                    .map_err(ArchivedBTreeMapError::ContextError)?;

                // To push the subtree, we need to know the real size of the root node
                // Since the header is checked, we can just classify the pointer and use layout_raw
                let root_layout = if root.is_inner() {
                    InnerNode::<K>::layout_raw(ptr_meta::metadata(root.classify_inner_ptr::<K>()))
                        .map_err(C::wrap_layout_error)
                        .map_err(ArchivedBTreeMapError::ContextError)?
                } else {
                    LeafNode::<K, V>::layout_raw(ptr_meta::metadata(
                        root.classify_leaf_ptr::<K, V>(),
                    ))
                    .map_err(C::wrap_layout_error)
                    .map_err(ArchivedBTreeMapError::ContextError)?
                };

                // Because the layout of the subtree is dynamic, we need to bounds check the layout
                // declared by the root node.
                context
                    .bounds_check_subtree_ptr_layout(root_ptr.cast(), &root_layout)
                    .map_err(ArchivedBTreeMapError::ContextError)?;

                // Now we can push the prefix subtree range.
                let nodes_range = context
                    .push_prefix_subtree_range(
                        root_ptr.cast(),
                        root_ptr.cast::<u8>().add(root_layout.size()),
                    )
                    .map_err(ArchivedBTreeMapError::ContextError)?;

                // Now we're finally ready to check node subtrees
                NodeHeader::manual_check_contents::<K, V, C>(root, context)?;

                nodes.push_back((root, 0));

                while let Some(&(node, depth)) = nodes.front() {
                    // Break when a leaf is found
                    if !node.is_inner() {
                        break;
                    }
                    nodes.pop_front();
                    let inner = node.classify_inner::<K>();

                    let child_ptr = context
                        .check_subtree_rel_ptr(&inner.header.ptr)
                        .map_err(ArchivedBTreeMapError::ContextError)?;
                    let child = NodeHeader::manual_check_bytes::<K, V, C>(child_ptr, context)?;
                    nodes.push_back((child, depth + 1));

                    // The invariant that this node contains keys less than the first key of this node will
                    // be checked when we iterate through the leaf nodes in order and check ordering
                    for entry in inner.tail.iter() {
                        let child_ptr = context
                            .check_subtree_rel_ptr(&entry.ptr)
                            .map_err(ArchivedBTreeMapError::ContextError)?;
                        let child = NodeHeader::manual_check_bytes::<K, V, C>(child_ptr, context)?;
                        nodes.push_back((child, depth + 1));
                    }
                }

                // We're done checking node subtrees now
                context
                    .pop_prefix_range(nodes_range)
                    .map_err(ArchivedBTreeMapError::ContextError)?;

                // The remaining nodes must all be leaf nodes
                let mut entry_count = 0;
                for (node, depth) in nodes.iter() {
                    if !node.is_leaf() {
                        return Err(ArchivedBTreeMapError::InnerNodeInLeafLevel);
                    }
                    let leaf = node.classify_leaf::<K, V>();

                    // Leaf nodes must all be the same depth
                    let expected_depth = nodes.front().unwrap().1;
                    if *depth != expected_depth {
                        return Err(ArchivedBTreeMapError::InvalidLeafNodeDepth {
                            expected: expected_depth,
                            actual: *depth,
                        });
                    }

                    // They must contain entries in sorted order
                    for (prev, next) in leaf.tail.iter().zip(leaf.tail.iter().skip(1)) {
                        if next.key < prev.key {
                            return Err(ArchivedBTreeMapError::UnsortedLeafNodeEntries);
                        }
                    }

                    // Keep track of the number of entries found
                    entry_count += leaf.tail.len();
                }

                for (i, (node, _)) in nodes.iter().enumerate() {
                    let leaf = node.classify_leaf::<K, V>();

                    // And they must link together in sorted order
                    if i < nodes.len() - 1 {
                        let next_ptr = context
                            .check_rel_ptr(&leaf.header.ptr)
                            .map_err(ArchivedBTreeMapError::ContextError)?;
                        let next_node = nodes[i + 1].0.classify_leaf();

                        if next_ptr != (next_node as *const LeafNode<K, V>).cast() {
                            return Err(ArchivedBTreeMapError::UnlinkedLeafNode);
                        }
                        if next_node.tail[0].key < leaf.tail[leaf.tail.len() - 1].key {
                            return Err(ArchivedBTreeMapError::UnsortedLeafNode);
                        }
                    } else {
                        // The last node must have a null pointer forward
                        if !leaf.header.ptr.is_null() {
                            return Err(ArchivedBTreeMapError::LastLeafForwardPointerNotNull);
                        }
                    }
                }

                // Make sure that the number of entries matches the length
                if entry_count != len {
                    return Err(ArchivedBTreeMapError::LengthMismatch {
                        expected: len,
                        actual: entry_count,
                    });
                }

                // Make sure that inner nodes are constructed appropriately
                if root.is_inner() {
                    root.classify_inner::<K>().verify_integrity::<V, C>()?;
                }
            }

            Ok(&*value)
        }
    }
};