1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
//! [`Archive`] implementation for B-tree maps.

#[cfg(feature = "validation")]
pub mod validation;

use crate::{Archive, ArchivePointee, Archived, RelPtr};
use core::{
    borrow::Borrow,
    cmp::Ordering,
    fmt,
    hash::{Hash, Hasher},
    iter::FusedIterator,
    marker::PhantomData,
    ops::Index,
    ptr::NonNull,
};
use ptr_meta::Pointee;

#[cfg_attr(feature = "strict", repr(C))]
struct InnerNodeEntry<K> {
    ptr: RelPtr<NodeHeader>,
    key: K,
}

#[cfg_attr(feature = "strict", repr(C))]
struct LeafNodeEntry<K, V> {
    key: K,
    value: V,
}

impl<'a, UK: Archive, UV: Archive> Archive for LeafNodeEntry<&'a UK, &'a UV> {
    type Archived = LeafNodeEntry<UK::Archived, UV::Archived>;
    type Resolver = (UK::Resolver, UV::Resolver);

    #[inline]
    unsafe fn resolve(&self, pos: usize, resolver: Self::Resolver, out: *mut Self::Archived) {
        let (fp, fo) = out_field!(out.key);
        self.key.resolve(pos + fp, resolver.0, fo);
        let (fp, fo) = out_field!(out.value);
        self.value.resolve(pos + fp, resolver.1, fo);
    }
}

#[cfg_attr(feature = "strict", repr(C))]
struct NodeHeader {
    meta: Archived<u16>,
    size: Archived<usize>,
    // For leaf nodes, this points to the next leaf node in order
    // For inner nodes, this points to the node in the next layer that's less than the first key in
    // this node
    ptr: RelPtr<NodeHeader>,
}

impl NodeHeader {
    #[inline]
    fn is_inner(&self) -> bool {
        split_meta(from_archived!(self.meta)).0
    }

    #[inline]
    fn is_leaf(&self) -> bool {
        !split_meta(from_archived!(self.meta)).0
    }

    #[inline]
    fn len(&self) -> usize {
        split_meta(from_archived!(self.meta)).1
    }
}

#[inline]
#[cfg(feature = "alloc")]
fn combine_meta(is_inner: bool, len: usize) -> u16 {
    if is_inner {
        0x80_00 | len as u16
    } else {
        len as u16
    }
}

#[inline]
fn split_meta(meta: u16) -> (bool, usize) {
    (meta & 0x80_00 == 0x80_00, (meta & 0x7F_FF) as usize)
}

#[cfg_attr(feature = "strict", repr(C))]
struct Node<T: ?Sized> {
    header: NodeHeader,
    tail: T,
}

impl<T> Pointee for Node<[T]> {
    type Metadata = usize;
}

impl<T> ArchivePointee for Node<[T]> {
    type ArchivedMetadata = Archived<usize>;

    #[inline]
    fn pointer_metadata(archived: &Self::ArchivedMetadata) -> <Self as Pointee>::Metadata {
        from_archived!(*archived) as usize
    }
}

type InnerNode<K> = Node<[InnerNodeEntry<K>]>;
type LeafNode<K, V> = Node<[LeafNodeEntry<K, V>]>;

struct NodeHeaderData {
    meta: u16,
    size: usize,
    pos: Option<usize>,
}

impl Archive for NodeHeaderData {
    type Archived = NodeHeader;
    type Resolver = ();

    #[inline]
    unsafe fn resolve(&self, pos: usize, _: Self::Resolver, out: *mut Self::Archived) {
        let (fp, fo) = out_field!(out.meta);
        self.meta.resolve(pos + fp, (), fo);

        let (fp, fo) = out_field!(out.size);
        self.size.resolve(pos + fp, (), fo);

        let (fp, fo) = out_field!(out.ptr);
        RelPtr::emplace(pos + fp, self.pos.unwrap_or(pos + fp), fo);
    }
}

struct InnerNodeEntryData<'a, UK> {
    key: &'a UK,
}

impl<'a, UK: Archive> Archive for InnerNodeEntryData<'a, UK> {
    type Archived = InnerNodeEntry<UK::Archived>;
    type Resolver = (usize, UK::Resolver);

    #[inline]
    unsafe fn resolve(&self, pos: usize, resolver: Self::Resolver, out: *mut Self::Archived) {
        let (fp, fo) = out_field!(out.ptr);
        RelPtr::emplace(pos + fp, resolver.0, fo);
        let (fp, fo) = out_field!(out.key);
        self.key.resolve(pos + fp, resolver.1, fo);
    }
}

enum ClassifiedNode<'a, K, V> {
    Inner(&'a InnerNode<K>),
    Leaf(&'a LeafNode<K, V>),
}

impl NodeHeader {
    #[inline]
    fn classify<K, V>(&self) -> ClassifiedNode<'_, K, V> {
        if self.is_inner() {
            ClassifiedNode::Inner(self.classify_inner())
        } else {
            ClassifiedNode::Leaf(self.classify_leaf())
        }
    }

    #[inline]
    fn classify_inner_ptr<K>(&self) -> *const InnerNode<K> {
        ptr_meta::from_raw_parts(self as *const Self as *const (), self.len())
    }

    #[inline]
    fn classify_inner<K>(&self) -> &'_ InnerNode<K> {
        debug_assert!(self.is_inner());
        unsafe { &*self.classify_inner_ptr() }
    }

    #[inline]
    fn classify_leaf_ptr<K, V>(&self) -> *const LeafNode<K, V> {
        ptr_meta::from_raw_parts(self as *const Self as *const (), self.len())
    }

    #[inline]
    fn classify_leaf<K, V>(&self) -> &'_ LeafNode<K, V> {
        debug_assert!(self.is_leaf());
        unsafe { &*self.classify_leaf_ptr() }
    }
}

/// An archived [`BTreeMap`](std::collections::BTreeMap).
#[cfg_attr(feature = "strict", repr(C))]
pub struct ArchivedBTreeMap<K, V> {
    len: Archived<usize>,
    root: RelPtr<NodeHeader>,
    _phantom: PhantomData<(K, V)>,
}

/// The resolver for an [`ArchivedBTreeMap`].
pub struct BTreeMapResolver {
    root_pos: usize,
}

/// The minimum number of entries to place in a leaf node.
///
/// This value must be greater than 0
pub const MIN_ENTRIES_PER_LEAF_NODE: usize = 1;

/// The minimum number of entries to place in an inner node.
///
/// This value must be greater than 1
pub const MIN_ENTRIES_PER_INNER_NODE: usize = 2;

impl<K, V> ArchivedBTreeMap<K, V> {
    #[inline]
    fn root(&self) -> Option<ClassifiedNode<K, V>> {
        if self.is_empty() {
            None
        } else {
            let root = unsafe { &*self.root.as_ptr() };
            Some(root.classify())
        }
    }

    #[inline]
    fn first(&self) -> NonNull<NodeHeader> {
        if let Some(mut node) = self.root() {
            while let ClassifiedNode::Inner(inner) = node {
                let next = unsafe { &*inner.header.ptr.as_ptr() };
                node = next.classify();
            }
            match node {
                ClassifiedNode::Leaf(leaf) => unsafe {
                    let node = (leaf as *const LeafNode<K, V> as *mut LeafNode<K, V>).cast();
                    NonNull::new_unchecked(node)
                },
                ClassifiedNode::Inner(_) => unsafe { core::hint::unreachable_unchecked() },
            }
        } else {
            NonNull::dangling()
        }
    }

    /// Returns `true` if the map contains a value for the specified key.
    ///
    /// The key may be any borrowed form of the map's key type, but the ordering on the borrowed
    /// form _must_ match the ordering on the key type.
    #[inline]
    pub fn contains_key<Q: Ord + ?Sized>(&self, key: &Q) -> bool
    where
        K: Borrow<Q> + Ord,
    {
        self.get_key_value(key).is_some()
    }

    /// Returns a reference to the value corresponding to the key.
    ///
    /// The key may be any borrowed form of the map’s key type, but the ordering on the borrowed
    /// form must match the ordering on the key type.
    #[inline]
    pub fn get<Q: Ord + ?Sized>(&self, key: &Q) -> Option<&V>
    where
        K: Borrow<Q> + Ord,
    {
        self.get_key_value(key).map(|(_, v)| v)
    }

    /// Returns the key-value pair corresponding to the supplied key.
    ///
    /// The supplied key may be any borrowed form of the map’s key type, but the ordering on the
    /// borrowed form must match the ordering on the key type.
    pub fn get_key_value<Q: Ord + ?Sized>(&self, k: &Q) -> Option<(&K, &V)>
    where
        K: Borrow<Q> + Ord,
    {
        if let Some(mut current) = self.root() {
            loop {
                match current {
                    ClassifiedNode::Inner(node) => {
                        // Binary search for the next node layer
                        let next = match node
                            .tail
                            .binary_search_by(|probe| probe.key.borrow().cmp(k))
                        {
                            Ok(i) => unsafe { &*node.tail[i].ptr.as_ptr() },
                            Err(i) => {
                                if i == 0 {
                                    unsafe { &*node.header.ptr.as_ptr() }
                                } else {
                                    unsafe { &*node.tail[i - 1].ptr.as_ptr() }
                                }
                            }
                        };
                        current = next.classify();
                    }
                    ClassifiedNode::Leaf(node) => {
                        // Binary search for the value
                        if let Ok(i) = node
                            .tail
                            .binary_search_by(|probe| probe.key.borrow().cmp(k))
                        {
                            let entry = &node.tail[i];
                            break Some((&entry.key, &entry.value));
                        } else {
                            break None;
                        }
                    }
                }
            }
        } else {
            None
        }
    }

    /// Returns `true` if the map contains no elements.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Gets an iterator over the entries of the map, sorted by key.
    #[inline]
    pub fn iter(&self) -> Iter<'_, K, V> {
        Iter {
            inner: RawIter::new(self.first(), 0, self.len()),
        }
    }

    /// Gets an iterator over the keys of the map, in sorted order.
    #[inline]
    pub fn keys(&self) -> Keys<'_, K, V> {
        Keys {
            inner: RawIter::new(self.first(), 0, self.len()),
        }
    }

    /// Returns the number of items in the archived B-tree map.
    #[inline]
    pub fn len(&self) -> usize {
        from_archived!(self.len) as usize
    }

    /// Gets an iterator over the values of the map, in order by key.
    #[inline]
    pub fn values(&self) -> Values<'_, K, V> {
        Values {
            inner: RawIter::new(self.first(), 0, self.len()),
        }
    }

    /// Resolves a B-tree map from its length.
    ///
    /// # Safety
    ///
    /// - `len` must be the number of elements that were serialized
    /// - `pos` must be the position of `out` within the archive
    /// - `resolver` must be the result of serializing a B-tree map
    #[inline]
    pub unsafe fn resolve_from_len(
        len: usize,
        pos: usize,
        resolver: BTreeMapResolver,
        out: *mut Self,
    ) {
        let (fp, fo) = out_field!(out.len);
        len.resolve(pos + fp, (), fo);

        let (fp, fo) = out_field!(out.root);
        RelPtr::emplace(pos + fp, resolver.root_pos, fo);
    }
}

#[cfg(feature = "alloc")]
const _: () = {
    use crate::{ser::Serializer, Serialize};
    #[cfg(not(feature = "std"))]
    use alloc::vec::Vec;
    use core::mem;

    impl<K, V> ArchivedBTreeMap<K, V> {
        /// Serializes an ordered iterator of key-value pairs as a B-tree map.
        ///
        /// # Safety
        ///
        /// - Keys returned by the iterator must be unique
        /// - Keys must be in reverse sorted order from last to first
        pub unsafe fn serialize_from_reverse_iter<'a, UK, UV, S, I>(
            mut iter: I,
            serializer: &mut S,
        ) -> Result<BTreeMapResolver, S::Error>
        where
            UK: 'a + Serialize<S, Archived = K>,
            UV: 'a + Serialize<S, Archived = V>,
            S: Serializer + ?Sized,
            I: ExactSizeIterator<Item = (&'a UK, &'a UV)>,
        {
            if iter.len() == 0 {
                Ok(BTreeMapResolver { root_pos: 0 })
            } else {
                // The memory span of a single node should not exceed 4kb to keep everything within
                // the distance of a single IO page
                const MAX_NODE_SIZE: usize = 4096;

                // The nodes that must go in the next level in reverse order (key, node_pos)
                let mut next_level = Vec::new();
                let mut resolvers = Vec::new();

                while let Some((key, value)) = iter.next() {
                    // Start a new block
                    let block_start_pos = serializer.pos();

                    // Serialize the last entry
                    resolvers.push((
                        key,
                        value,
                        key.serialize(serializer)?,
                        value.serialize(serializer)?,
                    ));

                    loop {
                        // This is an estimate of the block size
                        // It's not exact because there may be padding to align the node and entries
                        // slice
                        let estimated_block_size = serializer.pos() - block_start_pos
                            + mem::size_of::<NodeHeader>()
                            + resolvers.len() * mem::size_of::<LeafNodeEntry<K, V>>();

                        // If we've reached or exceeded the maximum node size and have put enough
                        // entries in this node, then break
                        if estimated_block_size >= MAX_NODE_SIZE
                            && resolvers.len() >= MIN_ENTRIES_PER_LEAF_NODE
                        {
                            break;
                        }

                        if let Some((key, value)) = iter.next() {
                            // Serialize the next entry
                            resolvers.push((
                                key,
                                value,
                                key.serialize(serializer)?,
                                value.serialize(serializer)?,
                            ));
                        } else {
                            break;
                        }
                    }

                    // Finish the current node
                    serializer.align(usize::max(
                        mem::align_of::<NodeHeader>(),
                        mem::align_of::<LeafNodeEntry<K, V>>(),
                    ))?;
                    let raw_node = NodeHeaderData {
                        meta: combine_meta(false, resolvers.len()),
                        size: serializer.pos() - block_start_pos,
                        // The last element of next_level is the next block we're linked to
                        pos: next_level.last().map(|&(_, pos)| pos),
                    };

                    // Add the first key and node position to the next level
                    next_level.push((
                        resolvers.last().unwrap().0,
                        serializer.resolve_aligned(&raw_node, ())?,
                    ));

                    serializer.align_for::<LeafNodeEntry<K, V>>()?;
                    for (key, value, key_resolver, value_resolver) in resolvers.drain(..).rev() {
                        serializer.resolve_aligned(
                            &LeafNodeEntry { key, value },
                            (key_resolver, value_resolver),
                        )?;
                    }
                }

                // Subsequent levels are populated by serializing node keys from the previous level
                // When there's only one node left, that's our root
                let mut current_level = Vec::new();
                let mut resolvers = Vec::new();
                while next_level.len() > 1 {
                    // Our previous next_level becomes our current level, and current_level is
                    // guaranteed to be empty at this point
                    mem::swap(&mut current_level, &mut next_level);

                    let mut iter = current_level.drain(..);
                    while iter.len() > 1 {
                        // Start a new inner block
                        let block_start_pos = serializer.pos();

                        // When we break, we're guaranteed to have at least one node left
                        while iter.len() > 1 {
                            let (key, pos) = iter.next().unwrap();

                            // Serialize the next entry
                            resolvers.push((key, pos, key.serialize(serializer)?));

                            // Estimate the block size
                            let estimated_block_size = serializer.pos() - block_start_pos
                                + mem::size_of::<NodeHeader>()
                                + resolvers.len() * mem::size_of::<InnerNodeEntry<K>>();

                            // If we've reached or exceeded the maximum node size and have put enough
                            // keys in this node, then break
                            if estimated_block_size >= MAX_NODE_SIZE
                                && resolvers.len() >= MIN_ENTRIES_PER_INNER_NODE
                            {
                                break;
                            }
                        }

                        // Three cases here:
                        // 1 entry left: use it as the last key
                        // 2 entries left: serialize the next one and use the last as last to avoid
                        //   putting only one entry in the final block
                        // 3+ entries left: use next as last, next block will contain at least two
                        //   entries

                        if iter.len() == 2 {
                            let (key, pos) = iter.next().unwrap();

                            // Serialize the next entry
                            resolvers.push((key, pos, key.serialize(serializer)?));
                        }

                        // The next item is the first node
                        let (first_key, first_pos) = iter.next().unwrap();

                        // Finish the current node
                        serializer.align(usize::max(
                            mem::align_of::<NodeHeaderData>(),
                            mem::align_of::<InnerNodeEntry<K>>(),
                        ))?;
                        let node_header = NodeHeaderData {
                            meta: combine_meta(true, resolvers.len()),
                            size: serializer.pos() - block_start_pos,
                            // The pos of the first key is used to make the pointer for inner nodes
                            pos: Some(first_pos),
                        };

                        // Add the second key and node position to the next level
                        next_level.push((first_key, serializer.resolve_aligned(&node_header, ())?));

                        serializer.align_for::<InnerNodeEntry<K>>()?;
                        for (key, pos, resolver) in resolvers.drain(..).rev() {
                            let inner_node_data = InnerNodeEntryData::<UK> { key };
                            serializer.resolve_aligned(&inner_node_data, (pos, resolver))?;
                        }
                    }

                    debug_assert!(iter.len() == 0);
                }

                // The root is only node in the final level
                Ok(BTreeMapResolver {
                    root_pos: next_level[0].1,
                })
            }
        }
    }
};

impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for ArchivedBTreeMap<K, V> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_map().entries(self.iter()).finish()
    }
}

impl<K, Q, V> Index<&'_ Q> for ArchivedBTreeMap<K, V>
where
    K: Borrow<Q> + Ord,
    Q: Ord + ?Sized,
{
    type Output = V;

    fn index(&self, key: &Q) -> &V {
        self.get(key).unwrap()
    }
}

impl<'a, K, V> IntoIterator for &'a ArchivedBTreeMap<K, V> {
    type Item = (&'a K, &'a V);
    type IntoIter = Iter<'a, K, V>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<K: Eq, V: Eq> Eq for ArchivedBTreeMap<K, V> {}

impl<K: Hash, V: Hash> Hash for ArchivedBTreeMap<K, V> {
    #[inline]
    fn hash<H: Hasher>(&self, state: &mut H) {
        for pair in self.iter() {
            pair.hash(state);
        }
    }
}

impl<K: Ord, V: Ord> Ord for ArchivedBTreeMap<K, V> {
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        self.iter().cmp(other.iter())
    }
}

impl<K: PartialEq, V: PartialEq> PartialEq for ArchivedBTreeMap<K, V> {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        if self.len() != other.len() {
            false
        } else {
            self.iter().zip(other.iter()).all(|(a, b)| a.eq(&b))
        }
    }
}

impl<K: PartialOrd, V: PartialOrd> PartialOrd for ArchivedBTreeMap<K, V> {
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.iter().partial_cmp(other.iter())
    }
}

// RawIter

struct RawIter<'a, K, V> {
    leaf: NonNull<NodeHeader>,
    index: usize,
    remaining: usize,
    _phantom: PhantomData<(&'a K, &'a V)>,
}

impl<'a, K, V> RawIter<'a, K, V> {
    fn new(leaf: NonNull<NodeHeader>, index: usize, remaining: usize) -> Self {
        Self {
            leaf,
            index,
            remaining,
            _phantom: PhantomData,
        }
    }
}

impl<'a, K, V> Iterator for RawIter<'a, K, V> {
    type Item = (&'a K, &'a V);

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.remaining == 0 {
            None
        } else {
            unsafe {
                // SAFETY: self.leaf is valid when self.remaining > 0
                // SAFETY: self.leaf always points to a leaf node header
                let leaf = self.leaf.as_ref().classify_leaf::<K, V>();
                if self.index == leaf.tail.len() {
                    self.index = 0;
                    // SAFETY: when self.remaining > 0 this is guaranteed to point to a leaf node
                    self.leaf = NonNull::new_unchecked(leaf.header.ptr.as_ptr() as *mut _);
                }
                let result = &self.leaf.as_ref().classify_leaf().tail[self.index];
                self.index += 1;
                self.remaining -= 1;
                Some((&result.key, &result.value))
            }
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.remaining, Some(self.remaining))
    }
}

impl<'a, K, V> ExactSizeIterator for RawIter<'a, K, V> {}
impl<'a, K, V> FusedIterator for RawIter<'a, K, V> {}

/// An iterator over the key-value pairs of an archived B-tree map.
pub struct Iter<'a, K, V> {
    inner: RawIter<'a, K, V>,
}

impl<'a, K, V> Iterator for Iter<'a, K, V> {
    type Item = (&'a K, &'a V);

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> {}
impl<'a, K, V> FusedIterator for Iter<'a, K, V> {}

/// An iterator over the keys of an archived B-tree map.
pub struct Keys<'a, K, V> {
    inner: RawIter<'a, K, V>,
}

impl<'a, K, V> Iterator for Keys<'a, K, V> {
    type Item = &'a K;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next().map(|(k, _)| k)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<'a, K, V> ExactSizeIterator for Keys<'a, K, V> {}
impl<'a, K, V> FusedIterator for Keys<'a, K, V> {}

/// An iterator over the values of an archived B-tree map.
pub struct Values<'a, K, V> {
    inner: RawIter<'a, K, V>,
}

impl<'a, K, V> Iterator for Values<'a, K, V> {
    type Item = &'a V;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next().map(|(_, v)| v)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<'a, K, V> ExactSizeIterator for Values<'a, K, V> {}
impl<'a, K, V> FusedIterator for Values<'a, K, V> {}