1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
use crate::{
    ser::Serializer,
    vec::{ArchivedVec, VecResolver},
    Archive, Serialize,
};
use core::{
    borrow::Borrow,
    cmp,
    ops::{Deref, Index, IndexMut},
    pin::Pin,
    slice::SliceIndex,
};

/// An archived [`Vec`].
///
/// This uses a [`RelPtr`](crate::rel_ptr::RelPtr) to a `[T]` under the hood. Unlike
/// [`ArchivedString`](crate::string::ArchivedString), it does not have an inline representation.
#[derive(Hash, Eq, Debug)]
#[repr(transparent)]
pub struct RawArchivedVec<T> {
    inner: ArchivedVec<T>,
}

impl<T> RawArchivedVec<T> {
    /// Returns a pointer to the first element of the archived vec.
    #[inline]
    pub fn as_ptr(&self) -> *const T {
        self.inner.as_ptr()
    }

    /// Returns the number of elements in the archived vec.
    #[inline]
    pub fn len(&self) -> usize {
        self.inner.len()
    }

    /// Returns whether the archived vec is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    /// Gets the elements of the archived vec as a slice.
    #[inline]
    pub fn as_slice(&self) -> &[T] {
        self.inner.as_slice()
    }

    /// Gets the elements of the archived vec as a pinned mutable slice.
    #[inline]
    pub fn pin_mut_slice(self: Pin<&mut Self>) -> Pin<&mut [T]> {
        unsafe { self.map_unchecked_mut(|s| &mut s.inner).pin_mut_slice() }
    }

    // This method can go away once pinned slices have indexing support
    // https://github.com/rust-lang/rust/pull/78370

    /// Gets the element at the given index ot this archived vec as a pinned mutable reference.
    #[inline]
    pub fn index_pin<I>(self: Pin<&mut Self>, index: I) -> Pin<&mut <[T] as Index<I>>::Output>
    where
        [T]: IndexMut<I>,
    {
        unsafe { self.map_unchecked_mut(|s| &mut s.inner).index_pin(index) }
    }

    /// Resolves an archived `Vec` from a given slice.
    ///
    /// # Safety
    ///
    /// - `pos` must be the position of `out` within the archive
    /// - `resolver` must be the result of serializing `value` with
    ///   [`serialize_copy_from_slice`](RawArchivedVec::serialize_copy_from_slice).
    #[inline]
    pub unsafe fn resolve_from_slice<U: Archive<Archived = T>>(
        slice: &[U],
        pos: usize,
        resolver: VecResolver,
        out: *mut Self,
    ) {
        ArchivedVec::resolve_from_slice(slice, pos, resolver, out.cast());
    }

    /// Serializes an archived `Vec` from a given slice by directly copying bytes.
    ///
    /// # Safety
    ///
    /// The type being serialized must be copy-safe. Copy-safe types must be trivially copyable
    /// (have the same archived and unarchived representations) and contain no padding bytes. In
    /// situations where copying uninitialized bytes the output is acceptable, this function may be
    /// used with types that contain padding bytes.
    ///
    /// Additionally, the type being serialized must not require any validation. All bit patterns
    /// must represent valid values.
    #[inline]
    pub unsafe fn serialize_copy_from_slice<U, S>(
        slice: &[U],
        serializer: &mut S,
    ) -> Result<VecResolver, S::Error>
    where
        U: Serialize<S, Archived = T>,
        S: Serializer + ?Sized,
    {
        ArchivedVec::serialize_copy_from_slice(slice, serializer)
    }
}

impl<T> AsRef<[T]> for RawArchivedVec<T> {
    #[inline]
    fn as_ref(&self) -> &[T] {
        self.inner.as_ref()
    }
}

impl<T> Borrow<[T]> for RawArchivedVec<T> {
    #[inline]
    fn borrow(&self) -> &[T] {
        self.inner.borrow()
    }
}

impl<T> Deref for RawArchivedVec<T> {
    type Target = [T];

    #[inline]
    fn deref(&self) -> &Self::Target {
        self.inner.deref()
    }
}

impl<T, I: SliceIndex<[T]>> Index<I> for RawArchivedVec<T> {
    type Output = <[T] as Index<I>>::Output;

    #[inline]
    fn index(&self, index: I) -> &Self::Output {
        self.inner.index(index)
    }
}

impl<T: PartialEq<U>, U> PartialEq<RawArchivedVec<U>> for RawArchivedVec<T> {
    #[inline]
    fn eq(&self, other: &RawArchivedVec<U>) -> bool {
        self.inner.eq(&other.inner)
    }
}

impl<T: PartialEq<U>, U, const N: usize> PartialEq<[U; N]> for RawArchivedVec<T> {
    #[inline]
    fn eq(&self, other: &[U; N]) -> bool {
        self.inner.eq(&other[..])
    }
}

impl<T: PartialEq<U>, U, const N: usize> PartialEq<RawArchivedVec<T>> for [U; N] {
    #[inline]
    fn eq(&self, other: &RawArchivedVec<T>) -> bool {
        self.eq(&other.inner)
    }
}

impl<T: PartialEq<U>, U> PartialEq<[U]> for RawArchivedVec<T> {
    #[inline]
    fn eq(&self, other: &[U]) -> bool {
        self.inner.eq(other)
    }
}

impl<T: PartialEq<U>, U> PartialEq<RawArchivedVec<U>> for [T] {
    #[inline]
    fn eq(&self, other: &RawArchivedVec<U>) -> bool {
        self.eq(&other.inner)
    }
}

impl<T: PartialOrd> PartialOrd<RawArchivedVec<T>> for RawArchivedVec<T> {
    #[inline]
    fn partial_cmp(&self, other: &RawArchivedVec<T>) -> Option<cmp::Ordering> {
        self.inner.partial_cmp(&other.inner)
    }
}

impl<T: Ord> Ord for RawArchivedVec<T> {
    #[inline]
    fn cmp(&self, other: &Self) -> cmp::Ordering {
        self.inner.cmp(&other.inner)
    }
}

impl<T: PartialOrd> PartialOrd<[T]> for RawArchivedVec<T> {
    #[inline]
    fn partial_cmp(&self, other: &[T]) -> Option<cmp::Ordering> {
        self.inner.partial_cmp(other)
    }
}

impl<T: PartialOrd> PartialOrd<RawArchivedVec<T>> for [T] {
    #[inline]
    fn partial_cmp(&self, other: &RawArchivedVec<T>) -> Option<cmp::Ordering> {
        self.partial_cmp(&other.inner)
    }
}

#[cfg(feature = "validation")]
const _: () = {
    use crate::validation::{owned::CheckOwnedPointerError, ArchiveContext};
    use bytecheck::{CheckBytes, Error};

    impl<T, C> CheckBytes<C> for RawArchivedVec<T>
    where
        T: CheckBytes<C>,
        C: ArchiveContext + ?Sized,
        C::Error: Error,
    {
        type Error = CheckOwnedPointerError<[T], C>;

        #[inline]
        unsafe fn check_bytes<'a>(
            value: *const Self,
            context: &mut C,
        ) -> Result<&'a Self, Self::Error> {
            ArchivedVec::<T>::check_bytes_with::<C, _>(value.cast(), context, |_, _| Ok(()))?;
            Ok(&*value)
        }
    }
};