1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
use crate::result::{KvsError, Result};
use crate::storage::{BatchStore, Store};

#[cfg(not(feature = "amortized"))]
use std::collections::HashMap;
use std::fmt::Display;
use std::hash::BuildHasherDefault;
use std::sync::Arc;

#[cfg(feature = "amortized")]
use griddle::HashMap;
use parking_lot::RwLock;
use seahash::SeaHasher;

type SeaHashMap = HashMap<Vec<u8>, Vec<u8>, BuildHasherDefault<SeaHasher>>;

/// The `MemStore` stores  key/value pairs.
///
/// In-memory key-value store using `HashMap` implementation and not persisted to disk.
pub struct MemStore {
    storage: Arc<RwLock<SeaHashMap>>,
}

impl MemStore {
    /// Creates a new Memory key-value storage engine.
    #[inline]
    pub fn open() -> Self {
        MemStore { storage: Arc::new(RwLock::new(SeaHashMap::default())) }
    }
}

impl Default for MemStore {
    fn default() -> Self {
        Self::open()
    }
}

impl Display for MemStore {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "memstore")
    }
}

impl Store for MemStore {
    #[inline]
    fn get(&self, key: impl AsRef<[u8]>) -> Result<Option<Vec<u8>>> {
        let storage = Arc::clone(&self.storage);
        let key = key.as_ref().to_owned();
        if key.is_empty() {
            return Err(KvsError::EmptyKey);
        }
        let storage = storage.read();
        Ok(storage.get(&key).cloned())
    }

    #[inline]
    fn set(&mut self, key: impl AsRef<[u8]>, value: impl AsRef<[u8]>) -> Result<()> {
        let storage = Arc::clone(&self.storage);
        let key = key.as_ref().to_owned();
        if key.is_empty() {
            return Err(KvsError::EmptyKey);
        }
        let value = value.as_ref().to_owned();
        let mut storage = storage.write();
        storage.insert(key, value);
        Ok(())
    }

    #[inline]
    fn remove(&mut self, key: impl AsRef<[u8]>) -> Result<()> {
        let storage = Arc::clone(&self.storage);
        let key = key.as_ref().to_owned();
        if key.is_empty() {
            return Err(KvsError::EmptyKey);
        }
        let mut storage = storage.write();
        storage.remove(&key);
        Ok(())
    }

    #[inline]
    fn contains(&mut self, key: impl AsRef<[u8]>) -> Result<bool> {
        let storage = Arc::clone(&self.storage);
        let key = key.as_ref().to_owned();
        if key.is_empty() {
            return Err(KvsError::EmptyKey);
        }
        let storage = storage.read();
        Ok(storage.contains_key(&key))
    }
}

impl BatchStore for MemStore {
    #[inline]
    fn get_batch(&self, keys: impl AsRef<[Vec<u8>]>) -> Result<Vec<Option<Vec<u8>>>> {
        let storage = Arc::clone(&self.storage);
        let keys = keys.as_ref().to_owned();
        let storage = storage.read();
        let values = keys.into_iter().map(|key| storage.get(&key).map(|v| v.to_vec())).collect();
        Ok(values)
    }

    #[inline]
    fn set_batch(
        &mut self,
        keys: impl AsRef<[Vec<u8>]>,
        values: impl AsRef<[Vec<u8>]>,
    ) -> Result<()> {
        let storage = Arc::clone(&self.storage);
        let keys = keys.as_ref().to_owned();
        let values = values.as_ref().to_owned();
        if keys.len() != values.len() {
            return Err(KvsError::InvalidData(
                "The number of keys does not match the number of values".to_string(),
            ));
        }
        let mut storage = storage.write();
        for i in 0..keys.len() {
            let key = keys[i].to_vec();
            let value = values[i].to_vec();

            storage.insert(key, value);
        }
        Ok(())
    }

    #[inline]
    fn remove_batch(&mut self, keys: impl AsRef<[Vec<u8>]>) -> Result<()> {
        let storage = Arc::clone(&self.storage);
        let keys = keys.as_ref().to_owned();
        let mut storage = storage.write();
        for key in keys {
            storage.remove(&key);
        }
        Ok(())
    }
}

#[cfg(test)]
impl super::TestSuite<MemStore> for MemStore {
    fn setup() -> Result<Self> {
        Ok(MemStore::open())
    }
}

#[test]
fn test_basic() -> Result<()> {
    use super::TestSuite;
    MemStore::test()
}

#[cfg(test)]
impl super::TestBatchSuite<MemStore> for MemStore {
    fn setup() -> Result<Self> {
        Ok(MemStore::open())
    }
}

#[test]
fn test_batch() -> Result<()> {
    use super::TestBatchSuite;
    MemStore::test()
}

#[test]
fn test_empty_key_error() {
    let mut store = MemStore::open();

    let key = b"".to_vec();

    match store.set(key, vec![0x01]) {
        Err(KvsError::EmptyKey) => (), // pass
        _ => panic!("should return error KvsError::EmptyKey"),
    }
}

#[test]
fn test_invalid_data_error() {
    let mut store = MemStore::open();

    let keys = b"".to_vec();

    match store.set_batch(vec![keys], vec![]) {
        Err(KvsError::InvalidData(_)) => (), // pass
        _ => panic!("should return error KvsError::InvalidData"),
    }
}