1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
//! `riscy` is a clean and clear implementation of the base 32-bit version of
//! RISC-V instruction set architecture, also known as RV32I.
//!
//! [The oficial specification for RV32I](https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf).
//!
//! `riscy` does not implement any instrucitons outside of the 42 instructions required by the spec.
//! This makes it rich enough that you can run most simple programs compiled from C on it while
//! keeping it small enough to be used as a tool to learn about RISC-V.
//!
//! Notably absent from the base specification are:
//!
//! * multiplication and division
//! * floating point numbers
//! * atomic memory operations
//! * support for compressed instructions
//! * instructions for operating system support (beyond ecall and ebreak)
//! * instructions for operating on control status registers (CSRs)
//!
//! This crate is a library for building emulators containing a RV32I core.
//! The basic building block for this is the [`RiscV`](RiscV) struct, which
//! roughly corresponds to a RISC-V hart (hardware thread).
//!
//! This crate also comes with a binary (also called `riscy`) which serves as an example of how
//! to use this library. It can run RISC-V ELF binaries, such as those cross-compiled from GCC
//! or Clang. It can also be used to disassemble those binaries.
//!
//! ```
//! $ vim hello.c
//! $ gcc -march=rv32i -mabi=ilp32 hello.c -o hello
//! $ riscy hello
//! Hello, world!
//! $ riscy --dis hello | head
//! PC = 0x00010090
//! _start
//! 0x00010090    97 51 00 00    auipc gp, 20480
//! 0x00010094    93 81 01 db    addi gp, gp, -592
//! 0x00010098    13 85 41 04    addi a0, gp, 68
//! 0x0001009c    13 86 c1 09    addi a2, gp, 156
//! 0x000100a0    33 06 a6 40    sub a2, a2, a0
//! 0x000100a4    93 05 00 00    addi a1, zero, 0
//! 0x000100a8    ef 00 c0 20    jal ra, 0x0000020c
//! 0x000100ac    17 05 00 00    auipc a0, 0
//! ```

mod addr;
mod decode;
mod reg;

pub mod memory;

pub use crate::decode::{decode, DecodeError};
pub use crate::memory::Memory;

pub use addr::Addr;
pub use reg::{Reg, RegVal};

use std::fmt;

pub use decode::Instruction;

/// A struct to hold the state of a RiscV core.
pub struct RiscV {
    program_counter: Addr,
    registers: [RegVal; 32],
}

/// A struct to indicate the result of calling .step() or its variants.
///
/// Most instructions return `StepResult::Ok`, indicating that the next
/// instruction was successfully fetched, decoded, and executed.
///
/// A result of StepResult::Call is the result of an ecall instruction.
/// Similarly, a result of StepResult::Break is the result of an ebreak instruction.
#[derive(Debug)]
pub enum StepResult {
    Ok,
    Call,
    Break,
    DecodeError(decode::DecodeError),
}

impl RiscV {
    /// Create a new RiscV core with all of its registers zeroed out.
    pub fn new() -> Self {
        RiscV {
            program_counter: Addr::new(0x0),
            registers: [RegVal::from_u32(0); 32],
        }
    }

    /// Fetch, execute, and retire a single instruction.
    /// When the core attempts to interact with memory, whether to fetch an instruction,
    /// to perform a load or store operation, etc, it makes use of the supplied `memory`.
    pub fn step<M: Memory>(&mut self, memory: &mut M) -> StepResult {
        self.step_with_retired(memory).0
    }

    /// Same as [`step`](crate::RiscV::step), but returns the decoded instruction.
    pub fn step_with_retired<M: Memory>(&mut self, memory: &mut M) -> (StepResult, Option<Instruction>) {
        let instruction_opt = decode::decode(memory.load_word(self.program_counter));

        match instruction_opt {
            Ok(instruction) => (self.step_instruction(instruction.clone(), memory), Some(instruction)),
            Err(invalid_instruction) => (StepResult::DecodeError(invalid_instruction), None),
        }
    }

    fn step_instruction<M: Memory>(&mut self, instruction: Instruction, memory: &mut M) -> StepResult {
        match instruction {
            Instruction::Beq { rs1, rs2, imm } => {
                let v1 = self.reg(rs1);
                let v2 = self.reg(rs2);
                if v1 == v2 {
                    self.program_counter += imm.val();
                } else {
                    self.program_counter += 4;
                }
                StepResult::Ok
            }
            Instruction::Bne { rs1, rs2, imm } => {
                let v1 = self.reg(rs1);
                let v2 = self.reg(rs2);
                if v1 != v2 {
                    self.program_counter += imm.val();
                } else {
                    self.program_counter += 4;
                }
                StepResult::Ok
            }
            Instruction::Blt { rs1, rs2, imm } => {
                let v1 = self.reg(rs1);
                let v2 = self.reg(rs2);
                if v1.less_than_signed(v2) {
                    self.program_counter += imm.val();
                } else {
                    self.program_counter += 4;
                }
                StepResult::Ok
            }
            Instruction::Bge { rs1, rs2, imm } => {
                let v1 = self.reg(rs1);
                let v2 = self.reg(rs2);
                if v1.greater_than_equal_to_signed(v2) {
                    self.program_counter += imm.val();
                } else {
                    self.program_counter += 4;
                }
                StepResult::Ok
            }
            Instruction::Bltu { rs1, rs2, imm } => {
                let v1 = self.reg(rs1);
                let v2 = self.reg(rs2);
                if v1.less_than_unsigned(v2) {
                    self.program_counter += imm.val();
                } else {
                    self.program_counter += 4;
                }
                StepResult::Ok
            }
            Instruction::Bgeu { rs1, rs2, imm } => {
                let v1 = self.reg(rs1);
                let v2 = self.reg(rs2);
                if v1.greater_than_equal_to_unsigned(v2) {
                    self.program_counter += imm.val();
                } else {
                    self.program_counter += 4;
                }
                StepResult::Ok
            }
            Instruction::Jalr { rd, rs1, imm } => {
                let target_addr = (self.reg(rs1).to_addr() + imm.val()).align_to_halfword();
                self.set_reg(rd, RegVal::from_addr(self.program_counter + 4));
                self.program_counter = target_addr;
                StepResult::Ok
            }
            Instruction::Jal { rd, imm } => {
                let target_addr = (self.program_counter + imm.val()).align_to_halfword();
                self.set_reg(rd, RegVal::from_addr(self.program_counter + 4));
                self.program_counter = target_addr;
                StepResult::Ok
            }
            Instruction::Lui { rd, imm } => {
                self.set_reg(rd, imm.val());
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Auipc { rd, imm } => {
                self.set_reg(rd, RegVal::from_addr(self.program_counter) + imm.val());
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Addi { rd, rs1, imm } => {
                self.set_reg(rd, self.reg(rs1) + imm.val());
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Slti { rd, rs1, imm } => {
                if self.reg(rs1).less_than_signed(imm.val()) {
                    self.set_reg(rd, RegVal::from_u32(1));
                } else {
                    self.set_reg(rd, RegVal::from_u32(0));
                }
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Sltiu { rd, rs1, imm } => {
                if self.reg(rs1).less_than_unsigned(imm.val()) {
                    self.set_reg(rd, RegVal::from_u32(1));
                } else {
                    self.set_reg(rd, RegVal::from_u32(0));
                }
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Xori { rd, rs1, imm } => {
                self.set_reg(rd, self.reg(rs1) ^ imm.val());
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Ori { rd, rs1, imm } => {
                self.set_reg(rd, self.reg(rs1) | imm.val());
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Andi { rd, rs1, imm } => {
                self.set_reg(rd, self.reg(rs1) & imm.val());
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Slli { rd, rs1, shamt } => {
                self.set_reg(rd, self.reg(rs1).shift_left_logical(shamt.val()));
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Srli { rd, rs1, shamt } => {
                self.set_reg(rd, self.reg(rs1).shift_right_logical(shamt.val()));
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Srai { rd, rs1, shamt } => {
                self.set_reg(rd, self.reg(rs1).shift_right_arithmetic(shamt.val()));
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Add { rd, rs1, rs2 } => {
                self.set_reg(rd, self.reg(rs1) + self.reg(rs2));
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Sub { rd, rs1, rs2 } => {
                self.set_reg(rd, self.reg(rs1) - self.reg(rs2));
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Sll { rd, rs1, rs2 } => {
                self.set_reg(rd, self.reg(rs1).shift_left_logical(self.reg(rs2)));
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Slt { rd, rs1, rs2 } => {
                if self.reg(rs1).less_than_signed(self.reg(rs2)) {
                    self.set_reg(rd, RegVal::from_u32(1));
                } else {
                    self.set_reg(rd, RegVal::from_u32(0));
                }
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Sltu { rd, rs1, rs2 } => {
                if self.reg(rs1).less_than_unsigned(self.reg(rs2)) {
                    self.set_reg(rd, RegVal::from_u32(1));
                } else {
                    self.set_reg(rd, RegVal::from_u32(0));
                }
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Xor { rd, rs1, rs2 } => {
                self.set_reg(rd, self.reg(rs1) ^ self.reg(rs2));
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Srl { rd, rs1, rs2 } => {
                self.set_reg(rd, self.reg(rs1).shift_right_logical(self.reg(rs2)));
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Sra { rd, rs1, rs2 } => {
                self.set_reg(rd, self.reg(rs1).shift_right_arithmetic(self.reg(rs2)));
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Or { rd, rs1, rs2 } => {
                self.set_reg(rd, self.reg(rs1) | self.reg(rs2));
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::And { rd, rs1, rs2 } => {
                self.set_reg(rd, self.reg(rs1) & self.reg(rs2));
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Lb { rd, rs1, imm } => {
                let addr = self.reg(rs1).to_addr() + imm.val();
                let val = RegVal::from_i32(memory.load_byte(addr) as i32);
                self.set_reg(rd, val);
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Lh { rd, rs1, imm } => {
                let addr = self.reg(rs1).to_addr() + imm.val();
                let val = RegVal::from_i32(memory.load_halfword(addr) as i32);
                self.set_reg(rd, val);
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Lw { rd, rs1, imm } => {
                let addr = self.reg(rs1).to_addr() + imm.val();
                let val = RegVal::from_i32(memory.load_word(addr) as i32);
                self.set_reg(rd, val);
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Lbu { rd, rs1, imm } => {
                let addr = self.reg(rs1).to_addr() + imm.val();
                let val = RegVal::from_u32(memory.load_byte(addr) as u32);
                self.set_reg(rd, val);
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Lhu { rd, rs1, imm } => {
                let addr = self.reg(rs1).to_addr() + imm.val();
                let val = RegVal::from_u32(memory.load_halfword(addr) as u32);
                self.set_reg(rd, val);
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Lwu { rd, rs1, imm } => {
                let addr = self.reg(rs1).to_addr() + imm.val();
                let val = RegVal::from_u32(memory.load_word(addr) as u32);
                self.set_reg(rd, val);
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Sb { rs1, rs2, imm } => {
                let addr = self.reg(rs1).to_addr() + imm.val();
                let val = self.reg(rs2).to_u32() as u8;
                memory.store_byte(addr, val);
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Sh { rs1, rs2, imm } => {
                let addr = self.reg(rs1).to_addr() + imm.val();
                let val = self.reg(rs2).to_u32() as u16;
                memory.store_halfword(addr, val);
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Sw { rs1, rs2, imm } => {
                let addr = self.reg(rs1).to_addr() + imm.val();
                let val = self.reg(rs2).to_u32() as u32;
                memory.store_word(addr, val);
                self.program_counter += 4;
                StepResult::Ok
            }
            Instruction::Fence { rd } => {
                let _ = rd;
                unimplemented!()
            }
            Instruction::FenceI { rd } => {
                let _ = rd;
                unimplemented!()
            }
            Instruction::ECall => StepResult::Call,
            Instruction::EBreak => StepResult::Break,
        }
    }

    /// Sets the given register to the given value.
    /// ```
    /// // sets the the stack pointer, `sp`, (also known as `x2`) to the value `0x2000_0000`.
    /// riscv.set_reg(2, 0x2000_0000.into());
    ///```
    pub fn set_reg<R: Into<Reg>>(&mut self, reg: R, reg_val: RegVal) {
        let Reg(reg_number) = reg.into();
        if reg_number != 0 {
            self.registers[reg_number as usize] = reg_val;
        }
    }

    /// Gets the value of the given register.
    /// ```
    /// // gets the value of the return address register, `ra`, (also known as `x1`).
    /// riscv.reg(1);
    ///```
    pub fn reg<R: Into<Reg>>(&self, reg: R) -> RegVal {
        let Reg(reg_number) = reg.into();
        self.registers[reg_number as usize]
    }

    /// Sets the value of the program counter to the given address.
    ///
    /// This is useful for specifying the entry point to the program when
    /// first initializing the machine.
    pub fn set_pc(&mut self, addr: Addr) {
        self.program_counter = addr;
    }

    /// Gets the value of the program counter.
    pub fn pc(&self) -> Addr {
        self.program_counter
    }
}

impl fmt::Display for RiscV {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for row in 0..8 {
            for col in 0..4 {
                let reg = Reg(8 * col + row);
                let reg_val = self.reg(reg).to_u32();
                write!(f, "{:<3} = {:8x}   ", reg.to_string(), reg_val)?;
            }
            write!(f, "\n")?;
        }
        Ok(())
    }
}