1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
use isa::{Instruction, OpCode};
use memory::Memory;

/// Represent the data which we need to send to the [write back] step
struct WriteBackData {
    pub perform: bool,
    pub rd: usize,
    pub value: i32,
}

enum WordSize {
    B = 1,
    H = 2,
    W = 4,
}

impl WordSize {
    /// Helper to create a WordSize out of an u8
    fn from_u8(s:u8) -> WordSize {
        match s {
            1 => WordSize::B,
            2 => WordSize::H,
            4 => WordSize::W,
            _ => WordSize::W,
        }
    }
}

enum MemAction {
    Load,
    Store,
}

/// Represent the data which we need to send to the [mem] step
/// It also contains information to forward to the next step ([write back])
struct MemData {
    pub pc: i32,

    /// data forwarding from ex stage
    pub wb_perform: bool,
    pub wb_rd: usize,

    /// used as union for either WB value or Store value
    pub value: i32,

    /// data needed to perform the load/store
    pub perform: Option<MemAction>,
    pub addr: usize,
    pub size: WordSize,
}

#[derive(Copy, Clone)]
struct PipelineState {
    pub pc: i32,
    pub instruction: Instruction,
}

impl PipelineState {
    fn empty() -> PipelineState {
        PipelineState { pc: 0, instruction: Instruction(0) }
    }
}

pub struct RV32IMachine {
    registers: [i32; 31],
    pc: i32,

    if2dc: PipelineState,
    dc2ex: PipelineState,
    ex2mem: MemData,
    mem2wb: WriteBackData,

    memory: Box<Memory>,
}

impl RV32IMachine {

    pub fn new(mem:Box<Memory>) -> RV32IMachine {
        RV32IMachine {
            registers : [0; 31],
            pc: 0, 
            if2dc: PipelineState::empty(),
            dc2ex: PipelineState::empty(),
            ex2mem: MemData { pc: 0, wb_rd: 0, wb_perform: false, perform: None, 
                addr: 0, size: WordSize::B, value: 0 },
            mem2wb: WriteBackData { perform: false, rd: 0, value: 0 },
            memory: mem,
        }
    }

    pub fn get_register(&self, i:usize) -> i32 {
        if i <= 0 || i > 31 {
            0
        } else {
            self.registers[i-1]
        }
    }

    pub fn set_register(&mut self, i:usize, x:i32) {
        // TODO implement exceptions when writing to r0
        if i > 0 && i < 32 {
            self.registers[i-1] = x
        }
    }

    /// Executes a pipeline cycle
    pub fn cycle(&mut self) {
        // We perform operation in reverse order to simulate a pipeline. Each
        // step must execute something based on previously computed last step.
        self.do_write_back();
        self.do_mem();
        self.do_execute();
        self.do_decode();
        self.do_fetch()
    }

    fn do_write_back(&mut self) {
        if self.mem2wb.perform {
            let rd = self.mem2wb.rd;
            let value = self.mem2wb.value;
            self.set_register(rd, value)
        }
    }

    fn do_mem(&mut self) {
        let value : i32;
        let perform_wb : bool;
        let rd: usize = self.ex2mem.wb_rd;

        match &self.ex2mem.perform {
            Some(MemAction::Load) => {
                perform_wb = true;
                value = match self.ex2mem.size {
                    WordSize::B => self.memory.get_8(self.ex2mem.addr) as i32,
                    WordSize::H => self.memory.get_16(self.ex2mem.addr) as i32,
                    WordSize::W => self.memory.get_32(self.ex2mem.addr) as i32,
                };
            },
            Some(MemAction::Store) => {
                let addr = self.ex2mem.addr;
                let val  = self.ex2mem.value;
                match self.ex2mem.size {
                    WordSize::B => self.memory.set_8(addr, val as u8),
                    WordSize::H => self.memory.set_16(addr, val as u16),
                    WordSize::W => self.memory.set_32(addr, val as u32),
                };
                perform_wb = false;
                value = 0
            },
            None => {
                perform_wb = self.ex2mem.wb_perform;
                value = self.ex2mem.value;
            }
        }

        self.mem2wb = WriteBackData { perform: perform_wb, value: value, rd: rd }
    }

    fn do_execute(&mut self) {
        let curr_pc = self.dc2ex.pc;
        let mut to_mem = MemData { pc: curr_pc, wb_perform: false, wb_rd: 0
            , value: 0, perform: None, addr: 0, size: WordSize::B };
        let i = self.dc2ex.instruction;
        match i.get_opcode_enum() {
            OpCode::LUI => {
                to_mem.wb_perform = true;
                to_mem.wb_rd = i.get_rd() as usize;
                to_mem.value = i.get_imm_u();
            },
            OpCode::AUIPC => {
                self.pc = curr_pc + i.get_imm_u();
            },
            OpCode::JAL => {
                to_mem.value = curr_pc + 4;
                to_mem.wb_perform = true;
                to_mem.wb_rd = i.get_rd() as usize;
                self.pc += curr_pc + i.get_imm_j();
            },
            OpCode::JALR => {
                to_mem.value = curr_pc + 4;
                to_mem.wb_perform = true;
                to_mem.wb_rd = i.get_rd() as usize;
                self.pc = self.get_register(i.get_rs1() as usize) + i.get_imm_i();
            },
            OpCode::BRANCH => {
                let npc = curr_pc + i.get_imm_b();
                
                let v1 = self.get_register(i.get_rs1() as usize);
                let uv1 = v1 as u32;

                let v2 = self.get_register(i.get_rs2() as usize);
                let uv2 = v2 as u32;

                self.pc = match i.get_funct3() {
                    0b000 => if  v1 ==  v2 { npc } else { self.pc }, // BEQ
                    0b001 => if  v1 !=  v2 { npc } else { self.pc }, // BNE
                    0b010 => if  v1 <   v2 { npc } else { self.pc }, // BLT
                    0b011 => if  v1 >=  v2 { npc } else { self.pc }, // BGE
                    0b100 => if uv1 <  uv2 { npc } else { self.pc }, // BLTU
                    0b101 => if uv1 >= uv2 { npc } else { self.pc }, // BGEU
                    _ => self.pc,
                }
            },
            OpCode::LOAD => {
                let width = WordSize::from_u8(i.get_funct3());
                let base = self.get_register(i.get_rs1() as usize) as usize;
                to_mem.perform = Some(MemAction::Load);
                to_mem.addr = i.get_imm_i() as usize + base;
                to_mem.size = width;
            },
            OpCode::STORE => {
                let width = WordSize::from_u8(i.get_funct3());
                let base = self.get_register(i.get_rs1() as usize) as usize;
                let src = self.get_register(i.get_rs2() as usize);
                to_mem.perform = Some(MemAction::Store);
                to_mem.addr = i.get_imm_s() as usize + base;
                to_mem.size = width;
                to_mem.value = src;
            },
            OpCode::OPIMM => {
                to_mem.wb_perform = true;
                to_mem.wb_rd = i.get_rd() as usize;

                let v1 = self.get_register(i.get_rs1() as usize);
                let v2 = if i.get_funct3() & 0b11 == 1 { i.get_rs2() as i32 }
                         else { i.get_imm_i() };

                to_mem.value = match i.get_funct3() {
                    0b000 => v1 + v2,
                    0b010 => (v1 < v2) as i32,
                    0b011 => ((v1 as u32) < v2 as u32) as i32,
                    0b100 => v1 ^ v2,
                    0b110 => v1 | v2,
                    0b111 => v1 & v2,
                    0b001 => v1 << v2,
                    0b101 => if i.get_funct7() != 0 { v1 >> v2 }
                             else { ((v1 as u32) >> v2) as i32 },
                    _ => 0, // Cannot be here, because funct3 is on 3 bits
                };
            },
            OpCode::OPREG => {
                to_mem.wb_perform = true;
                to_mem.wb_rd = i.get_rd() as usize;

                let v1 = self.get_register(i.get_rs1() as usize);
                let v2 = self.get_register(i.get_rs2() as usize);

                to_mem.value = match i.get_funct7() {
                    0b0000000 => match i.get_funct3() {
                        0b000 => v1 + v2,
                        0b001 => v1 >> v2,
                        0b010 => (v1 < v2) as i32,
                        0b011 => ((v1 as u32) < v2 as u32) as i32,
                        0b100 => v1 ^ v2,
                        0b101 => ((v1 as u32) >> v2) as i32,
                        0b110 => v1 | v2,
                        0b111 => v1 & v2,
                        _ => 0, // Cannot be here, because funct3 is on 3 bits
                    },
                    0b0000001 => match i.get_funct3() {
                        _ => 0, // TODO handle M extension (mul/div)
                    },
                    0b0100000 => match i.get_funct3() {
                        0b000 => v1 - v2,
                        0b101 => v1 >> v2,
                        _ => 0, // TODO handle bad funct3 values
                    },
                    _ => 0, // TODO add other extensions (F has priority)
                };

            },
            _ => {}
        }

        self.ex2mem = to_mem
    }

    fn do_decode(&mut self) {
        self.dc2ex = self.if2dc
    }

    fn do_fetch(&mut self) {
        let i = Instruction(self.memory.get_32(self.pc as usize));
        self.if2dc = PipelineState { pc: self.pc, instruction: i }
    }
}