1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// Copyright 2023 RISC Zero, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#![doc = include_str!("../README.md")]
#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(feature = "prove")]
mod cpp;
#[cfg(feature = "prove")]
pub mod cpu;
#[cfg(feature = "cuda")]
pub mod cuda;
#[cfg(feature = "prove")]
mod ffi;
mod info;
#[cfg(feature = "metal")]
pub mod metal;
pub mod poly_ext;
mod taps;
pub mod verify_taps_rv32im;

use risc0_zkp::{adapter::TapsProvider, taps::TapSet};

pub struct CircuitImpl;

impl CircuitImpl {
    pub const fn new() -> Self {
        CircuitImpl
    }
}

impl TapsProvider for CircuitImpl {
    fn get_taps(&self) -> &'static TapSet<'static> {
        taps::TAPSET
    }
}

#[cfg(test)]
mod tests {
    use risc0_zkp::{
        adapter::{CircuitStep, CircuitStepContext, CircuitStepHandler},
        field::baby_bear::BabyBearElem,
    };

    use crate::CircuitImpl;

    struct CustomStepMock {}

    impl CircuitStepHandler<BabyBearElem> for CustomStepMock {
        fn call(
            &mut self,
            _cycle: usize,
            name: &str,
            extra: &str,
            args: &[BabyBearElem],
            outs: &mut [BabyBearElem],
        ) -> anyhow::Result<()> {
            println!("name: {name}, extra: {extra}, args: {args:?}");
            outs[0] = BabyBearElem::new(2);
            Ok(())
        }

        fn sort(&mut self, _name: &str) {
            unimplemented!()
        }
        fn calc_prefix_products(&mut self) {
            unimplemented!()
        }
    }

    #[test]
    fn step_exec() {
        let circuit = CircuitImpl::new();
        let mut custom = CustomStepMock {};
        let ctx = CircuitStepContext { size: 0, cycle: 0 };
        let mut args0 = vec![BabyBearElem::default(); 20];
        let mut args2 = vec![BabyBearElem::default(); 20];
        let args: &mut [&mut [BabyBearElem]] =
            &mut [&mut args0, &mut [], &mut args2, &mut [], &mut []];
        circuit.step_exec(&ctx, &mut custom, args).unwrap();
    }
}

#[cfg(feature = "test")]
pub mod testutil {
    use rand::{thread_rng, Rng};
    use risc0_zkp::{
        adapter::{CircuitInfo, TapsProvider},
        field::{
            baby_bear::{BabyBearElem, BabyBearExtElem},
            Elem, ExtElem,
        },
        hal::{Buffer, EvalCheck, Hal},
        taps::RegisterGroup,
        INV_RATE,
    };

    use crate::CircuitImpl;

    pub struct EvalCheckParams {
        pub po2: usize,
        pub steps: usize,
        pub domain: usize,
        pub code: Vec<BabyBearElem>,
        pub data: Vec<BabyBearElem>,
        pub accum: Vec<BabyBearElem>,
        pub mix: Vec<BabyBearElem>,
        pub out: Vec<BabyBearElem>,
        pub poly_mix: BabyBearExtElem,
    }

    impl EvalCheckParams {
        pub fn new(po2: usize) -> Self {
            let mut rng = thread_rng();
            let steps = 1 << po2;
            let domain = steps * INV_RATE;
            let circuit = crate::CircuitImpl::new();
            let taps = circuit.get_taps();
            let code_size = taps.group_size(RegisterGroup::Code);
            let data_size = taps.group_size(RegisterGroup::Data);
            let accum_size = taps.group_size(RegisterGroup::Accum);
            let code = random_fps(&mut rng, code_size * domain);
            let data = random_fps(&mut rng, data_size * domain);
            let accum = random_fps(&mut rng, accum_size * domain);
            let mix = random_fps(&mut rng, CircuitImpl::MIX_SIZE);
            let out = random_fps(&mut rng, CircuitImpl::OUTPUT_SIZE);
            let poly_mix = BabyBearExtElem::random(&mut rng);
            log::debug!("code: {} bytes", code.len() * 4);
            log::debug!("data: {} bytes", data.len() * 4);
            log::debug!("accum: {} bytes", accum.len() * 4);
            log::debug!("mix: {} bytes", mix.len() * 4);
            log::debug!("out: {} bytes", out.len() * 4);
            Self {
                po2,
                steps,
                domain,
                code,
                data,
                accum,
                mix,
                out,
                poly_mix,
            }
        }
    }

    fn random_fps<E: Elem>(rng: &mut impl Rng, size: usize) -> Vec<E> {
        let mut ret = Vec::new();
        for _ in 0..size {
            ret.push(E::random(rng));
        }
        ret
    }

    #[allow(unused)]
    pub(crate) fn eval_check<H1, H2, E1, E2>(hal1: &H1, eval1: E1, hal2: &H2, eval2: E2, po2: usize)
    where
        H1: Hal<Elem = BabyBearElem, ExtElem = BabyBearExtElem>,
        H2: Hal<Elem = BabyBearElem, ExtElem = BabyBearExtElem>,
        E1: EvalCheck<H1>,
        E2: EvalCheck<H2>,
    {
        let params = EvalCheckParams::new(po2);
        let check1 = eval_check_impl(&params, hal1, &eval1);
        let check2 = eval_check_impl(&params, hal2, &eval2);
        assert_eq!(check1, check2);
    }

    pub fn eval_check_impl<H, E>(params: &EvalCheckParams, hal: &H, eval: &E) -> Vec<H::Elem>
    where
        H: Hal<Elem = BabyBearElem, ExtElem = BabyBearExtElem>,
        E: EvalCheck<H>,
    {
        let check = hal.alloc_elem("check", BabyBearExtElem::EXT_SIZE * params.domain);
        let code = hal.copy_from_elem("code", &params.code);
        let data = hal.copy_from_elem("data", &params.data);
        let accum = hal.copy_from_elem("accum", &params.accum);
        let mix = hal.copy_from_elem("mix", &params.mix);
        let out = hal.copy_from_elem("out", &params.out);
        eval.eval_check(
            &check,
            &code,
            &data,
            &accum,
            &mix,
            &out,
            params.poly_mix,
            params.po2,
            params.steps,
        );
        let mut ret = vec![H::Elem::ZERO; check.size()];
        check.view(|view| {
            ret.clone_from_slice(view);
        });
        ret
    }
}