1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
use buffers::{Buffer, ReadableBuffer, WritableBuffer};
use internal::arrays::{self, CircularArray};

/// Growable ring buffer.
///
/// Optimized for repeated appending of bytes to the end and removing bytes from the front of the buffer.
pub struct UnboundedBuffer<T> {
    /// Backing array where elements are stored. Size is always a power of two.
    array: CircularArray<T>,

    /// The "head" index into the backing array that marks the start of the buffer elements.
    ///
    /// This index may exceed the length of the backing array during the lifetime of the buffer, and is only ever
    /// incremented.
    head: usize,

    /// The "tail" index into the backing array that marks the end of the buffer elements.
    ///
    /// Same as `head`, this is incremented unbounded.
    tail: usize,
}

impl<T: Copy> Default for UnboundedBuffer<T> {
    fn default() -> UnboundedBuffer<T> {
        UnboundedBuffer::new()
    }
}

impl<T: Copy> UnboundedBuffer<T> {
    pub const DEFAULT_CAPACITY: usize = 4096;

    /// Create a new unbounded buffer with the default capacity.
    pub fn new() -> Self {
        Self::with_capacity(Self::DEFAULT_CAPACITY)
    }

    /// Create a new unbounded buffer with a given minimum capacity pre-allocated.
    pub fn with_capacity(capacity: usize) -> Self {
        let capacity = capacity.next_power_of_two();
        Self {
            array: unsafe { CircularArray::uninitialized(capacity) },
            head: 0,
            tail: 0,
        }
    }

    fn resize(&mut self, size: usize) {
        let mut array = unsafe { CircularArray::uninitialized(size) };

        let copied = self.copy_to(array.as_mut());
        debug_assert_eq!(copied, self.len());

        self.tail = copied;
        self.head = 0;
        self.array = array;
    }
}

impl<T> Buffer<T> for UnboundedBuffer<T> {
    #[inline]
    fn is_empty(&self) -> bool {
        // The head and tail can only be equal to each other if: (a) the number of inserted elements over time is equal
        // to the number of removed elements over time, and is thus empty; or (b) exactly `usize::max_value()` elements
        // were inserted without being removed such that `tail` overflowed and wrapped around to equal `head`. This is
        // improbable since the buffer would have to be at least the size of max pointer value. If the OS does let you
        // allocate more memory than fits in a pointer, you have bigger problems.
        self.head == self.tail
    }

    #[inline]
    fn len(&self) -> usize {
        // Even if `tail` overflows and becomes less than `head`, subtracting will underflow and result in the correct
        // length.
        self.tail.wrapping_sub(self.head)
    }

    #[inline]
    fn capacity(&self) -> usize {
        self.array.len()
    }

    fn clear(&mut self) {
        self.head = 0;
        self.tail = 0;
    }
}

impl<T: Copy> ReadableBuffer<T> for UnboundedBuffer<T> {
    fn copy_to(&self, dest: &mut [T]) -> usize {
        if self.head == self.tail {
            return 0;
        }

        let slices = self.array.as_slices(self.head..self.tail);
        arrays::copy_from_seq(&slices, dest)
    }

    fn consume(&mut self, count: usize) -> usize {
        // We can only consume as many elements as are in the buffer.
        let count = count.min(self.len());
        self.head = self.head.wrapping_add(count);
        count
    }
}

impl<T: Copy> WritableBuffer<T> for UnboundedBuffer<T> {
    fn push(&mut self, src: &[T]) -> usize {
        // If the number of bytes to add would exceed the capacity, grow the internal array first.
        let new_len = self.len() + src.len();
        if new_len > self.capacity() {
            self.resize(new_len);
        }

        let mut slices = self.array.as_slices_mut(self.tail..self.head);
        let pushed = arrays::copy_to_seq(src, &mut slices);

        self.tail = self.tail.wrapping_add(pushed);
        debug_assert_eq!(pushed, src.len());
        pushed
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_capacity() {
        let buffer = UnboundedBuffer::<u8>::with_capacity(16);
        assert_eq!(buffer.capacity(), 16);
    }

    #[test]
    fn test_push() {
        let mut buffer = UnboundedBuffer::new();

        assert!(buffer.is_empty());

        let bytes = b"hello world";
        assert_eq!(buffer.push(bytes), bytes.len());

        assert!(!buffer.is_empty());
        assert_eq!(buffer.len(), bytes.len());
    }

    #[test]
    fn test_push_and_consume() {
        let mut buffer = UnboundedBuffer::with_capacity(12);

        assert_eq!(buffer.push(b"hello world"), 11);

        assert_eq!(buffer.consume(6), 6);
        assert_eq!(buffer.len(), 5);

        assert_eq!(buffer.push(b" hello"), 6);

        assert_eq!(buffer.len(), 11);
    }

    #[test]
    fn test_push_a_lot() {
        let mut buffer = UnboundedBuffer::new();
        let bytes = "heavyweight;".repeat(1000).into_bytes();

        assert_eq!(buffer.len(), 0);
        assert_eq!(buffer.push(&bytes), bytes.len());
        assert_eq!(buffer.len(), bytes.len());
        assert_eq!(buffer.consume(bytes.len()), bytes.len());
        assert_eq!(buffer.len(), 0);
    }

    #[test]
    fn test_pull_more_than_buffer() {
        let mut buffer = UnboundedBuffer::new();
        let bytes = b"hello world";
        assert_eq!(buffer.push(bytes), 11);

        let mut dst = [0; 1024];
        assert_eq!(buffer.pull(&mut dst), bytes.len());
        assert_eq!(&dst[0..bytes.len()], bytes);
        assert!(buffer.is_empty());
    }

    #[test]
    fn test_pull_less_than_buffer() {
        let mut buffer = UnboundedBuffer::new();
        let bytes = b"hello world";
        buffer.push(bytes);

        let mut dst = [0; 4];
        assert_eq!(buffer.pull(&mut dst), dst.len());
        assert_eq!(&dst, &bytes[0..4]);
        assert!(!buffer.is_empty());
        assert_eq!(buffer.len(), bytes.len() - dst.len());
    }

    #[test]
    fn test_force_resize() {
        let mut buffer = UnboundedBuffer::with_capacity(8);

        buffer.push(b"hello");
        assert_eq!(buffer.capacity(), 8);

        buffer.push(b" world");
        assert!(buffer.capacity() > 8);

        let mut out = [0; 11];
        buffer.copy_to(&mut out);
        assert_eq!(&out, b"hello world");
    }
}