1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Cryptographic pseudo-random number generation.
//!
//! An application should create a single `SystemRandom` and then use it for
//! all randomness generation. Functions that generate random bytes should take
//! a `&SecureRandom` parameter instead of instantiating their own. Besides
//! being more efficient, this also helps document where non-deterministic
//! (random) outputs occur. Taking a reference to a `SecureRandom` also helps
//! with testing techniques like fuzzing, where it is useful to use a
//! (non-secure) deterministic implementation of `SecureRandom` so that results
//! can be replayed. Following this pattern also may help with sandboxing
//! (seccomp filters on Linux in particular). See `SystemRandom`'s
//! documentation for more details.


#[cfg(any(target_os = "linux", windows, test))]
use c;

#[cfg(test)]
use core;

use error;


/// A secure random number generator.
pub trait SecureRandom {
    /// Fills `dest` with random bytes.
    fn fill(&self, dest: &mut [u8]) -> Result<(), error::Unspecified>;
}

/// A secure random number generator where the random values come directly
/// from the operating system.
///
/// A single `SystemRandom` may be shared across multiple threads safely.
///
/// `new()` is guaranteed to always succeed and to have low latency; it won't
/// try to open or read from a file or do similar things. The first call to
/// `fill()` may block a substantial amount of time since any and all
/// initialization is deferred to it. Therefore, it may be a good idea to call
/// `fill()` once at a non-latency-sensitive time to minimize latency for
/// future calls.
///
/// On non-Linux Unix-/Posix-ish platforms, `fill()` is currently always
/// implemented by reading from `/dev/urandom`. (This is something that should
/// be improved, at least for platforms that offer something better.)
///
/// On Linux, `fill()` will use the [`getrandom`] syscall. If the kernel is too
/// old to support `getrandom` then by default `fill()` falls back to reading
/// from `/dev/urandom`. This decision is made the first time `fill`
/// *succeeds*. The fallback to `/dev/urandom` can be disabled by disabling the
/// `dev_urandom_fallback` default feature; this should be done whenever the
/// target system is known to support `getrandom`. Library crates should avoid
/// explicitly enabling the `dev_urandom_fallback` feature.
///
/// On Windows, `fill` is implemented using the platform's API for secure
/// random number generation.
///
/// When `/dev/urandom` is used, a file handle for `/dev/urandom` won't be
/// opened until `fill` is called. In particular, `SystemRandom::new()` will
/// not open `/dev/urandom` or do other potentially-high-latency things. The
/// file handle will never be closed, until the operating system closes it at
/// process shutdown. All instance of `SystemRandom` will share a single file
/// handle.
///
/// On Linux, to properly implement seccomp filtering when the
/// `dev_urandom_fallback` default feature is disabled, allow `getrandom`
/// through. When the fallback is enabled, allow file opening, `getrandom`,
/// and `read` up until the first call to `fill()` succeeds. After that, allow
/// `getrandom` and `read`.
///
/// [`getrandom`]: http://man7.org/linux/man-pages/man2/getrandom.2.html
pub struct SystemRandom;

impl SystemRandom {
    /// Constructs a new `SystemRandom`.
    #[inline(always)]
    pub fn new() -> SystemRandom { SystemRandom }
}

impl SystemRandom {
    /// This is the same as calling `fill` through the `SecureRandom` trait,
    /// but allows callers to avoid the annoying step of needing to
    /// `use rand::SecureRandom` just to call `fill` on a `SystemRandom`.
    #[inline(always)]
    pub fn fill(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
        fill_impl(dest)
    }
}

impl SecureRandom for SystemRandom {
    #[inline(always)]
    fn fill(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
        fill_impl(dest)
    }
}

#[cfg(not(any(target_os = "linux", windows)))]
use self::urandom::fill as fill_impl;

#[cfg(any(all(target_os = "linux", not(feature = "dev_urandom_fallback")),
          windows))]
use self::sysrand::fill as fill_impl;

#[cfg(all(target_os = "linux", feature = "dev_urandom_fallback"))]
use self::sysrand_or_urandom::fill as fill_impl;

#[cfg(any(target_os = "linux", windows))]
mod sysrand {
    use {bssl, error};

    pub fn fill(dest: &mut [u8]) -> Result<(), error::Unspecified> {
        let chunk_len = unsafe { super::GFp_sysrand_chunk_max_len };
        for mut chunk in dest.chunks_mut(chunk_len) {
            try!(bssl::map_result(unsafe {
                super::GFp_sysrand_chunk(chunk.as_mut_ptr(), chunk.len())
            }));
        }
        Ok(())
    }
}

// Keep the `cfg` conditions in sync with the conditions in lib.rs.
#[cfg(all(unix,
          not(all(target_os = "linux",
                  not(feature = "dev_urandom_fallback")))))]
mod urandom {
    extern crate std;
    use error;

    pub fn fill(dest: &mut [u8]) -> Result<(), error::Unspecified> {
        lazy_static! {
            static ref FILE: Result<std::fs::File, std::io::Error> =
                std::fs::File::open("/dev/urandom");
        }

        match *FILE {
            Ok(ref file) => {
                use self::std::io::Read;
                (&*file).read_exact(dest).map_err(|_| error::Unspecified)
            },
            Err(_) => Err(error::Unspecified),
        }
    }
}

// Keep the `cfg` conditions in sync with the conditions in lib.rs.
#[cfg(all(target_os = "linux", feature = "dev_urandom_fallback"))]
mod sysrand_or_urandom {
    extern crate std;
    use error;

    enum Mechanism {
        Sysrand,
        DevURandom,
    }

    pub fn fill(dest: &mut [u8]) -> Result<(), error::Unspecified> {
        lazy_static! {
            static ref MECHANISM: Mechanism = {
                let mut dummy = [0u8; 1];
                if unsafe {
                    super::GFp_sysrand_chunk(dummy.as_mut_ptr(),
                                               dummy.len()) } == -1 {
                    Mechanism::DevURandom
                } else {
                    Mechanism::Sysrand
                }
            };
        }

        match *MECHANISM {
            Mechanism::Sysrand => super::sysrand::fill(dest),
            Mechanism::DevURandom => super::urandom::fill(dest),
        }
    }
}

/// An adapter that lets the C code use `SecureRandom`.
#[allow(non_snake_case)]
#[doc(hidden)]
pub struct RAND<'a> {
    pub rng: &'a SecureRandom,
}

impl<'a> RAND<'a> {
    /// Wraps `rng` in a `RAND` so it can be passed to non-Rust code.
    pub fn new(rng: &'a SecureRandom) -> RAND<'a> { RAND { rng: rng } }
}

#[cfg(test)]
#[allow(non_snake_case)]
#[doc(hidden)]
#[no_mangle]
pub unsafe extern fn RAND_bytes(rng: *mut RAND, dest: *mut u8,
                                dest_len: c::size_t) -> c::int {
    let dest: &mut [u8] = core::slice::from_raw_parts_mut(dest, dest_len);

    match (*(*rng).rng).fill(dest) {
        Ok(()) => 1,
        _ => 0,
    }
}


#[cfg(any(target_os = "linux", windows))]
extern {
    static GFp_sysrand_chunk_max_len: c::size_t;
    fn GFp_sysrand_chunk(buf: *mut u8, len: c::size_t) -> c::int;
}


#[cfg(test)]
mod tests {
    use rand;
    extern crate std;

    #[test]
    fn test_system_random_lengths() {
        // Test that `fill` succeeds for various interesting lengths. `256` and
        // multiples thereof are interesting because that's an edge case for
        // `getrandom` on Linux.
        let lengths = [0, 1, 2, 3, 96, 255, 256, 257, 511, 512, 513, 4096];

        for len in lengths.iter() {
            let mut buf = vec![0; *len];

            let rng = rand::SystemRandom::new();
            assert!(rng.fill(&mut buf).is_ok());

            // If `len` < 96 then there's a big chance of false positives, but
            // otherwise the likelihood of a false positive is so too low to
            // worry about.
            if *len >= 96 {
                assert!(buf.iter().any(|x| *x != 0));
            }

            // Make sure we didn't forget to finish filling in the rest of the
            // buffer after we filled in the first chunk, especially in the
            // case in the `SysRandOrDevURandom::Undecided` case. As above, we
            // only do this when there are at least 96 bytes after the first
            // chunk to avoid false positives.
            if *len > 96 && *len - 96 > max_chunk_len() {
                assert!(buf[max_chunk_len()..].iter().any(|x| *x != 0));
            }
        }
    }

    #[cfg(any(target_os = "linux", windows))]
    fn max_chunk_len() -> usize { unsafe { super::GFp_sysrand_chunk_max_len } }

    #[cfg(not(any(target_os = "linux", windows)))]
    fn max_chunk_len() -> usize {
        use core;
        core::usize::MAX
    }
}