1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// Copyright 2015 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! PBKDF2 derivation and verification.
//!
//! Use `derive` to derive PBKDF2 outputs. Use `verify` to verify secret
//! against previously-derived outputs.
//!
//! PBKDF2 is specified in [RFC 2898 Section 5.2] with test vectors given in
//! [RFC 6070]. See also [NIST Special Publication 800-132].
//!
//! [RFC 2898 Section 5.2]: https://tools.ietf.org/html/rfc2898#section-5.2
//! [RFC 6070]: https://tools.ietf.org/html/rfc6070
//! [NIST Special Publication 800-132]:
//!    http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
//!
//! # Examples
//!
//! ## Password Database Example
//!
//! ```
//! use ring::{digest, pbkdf2};
//! use std::{collections::HashMap, num::NonZeroU32};
//!
//! static PBKDF2_ALG: pbkdf2::Algorithm = pbkdf2::PBKDF2_HMAC_SHA256;
//! const CREDENTIAL_LEN: usize = digest::SHA256_OUTPUT_LEN;
//! pub type Credential = [u8; CREDENTIAL_LEN];
//!
//! enum Error {
//!     WrongUsernameOrPassword
//! }
//!
//! struct PasswordDatabase {
//!     pbkdf2_iterations: NonZeroU32,
//!     db_salt_component: [u8; 16],
//!
//!     // Normally this would be a persistent database.
//!     storage: HashMap<String, Credential>,
//! }
//!
//! impl PasswordDatabase {
//!     pub fn store_password(&mut self, username: &str, password: &str) {
//!         let salt = self.salt(username);
//!         let mut to_store: Credential = [0u8; CREDENTIAL_LEN];
//!         pbkdf2::derive(PBKDF2_ALG, self.pbkdf2_iterations, &salt,
//!                        password.as_bytes(), &mut to_store);
//!         self.storage.insert(String::from(username), to_store);
//!     }
//!
//!     pub fn verify_password(&self, username: &str, attempted_password: &str)
//!                            -> Result<(), Error> {
//!         match self.storage.get(username) {
//!            Some(actual_password) => {
//!                let salt = self.salt(username);
//!                pbkdf2::verify(PBKDF2_ALG, self.pbkdf2_iterations, &salt,
//!                               attempted_password.as_bytes(),
//!                               actual_password)
//!                     .map_err(|_| Error::WrongUsernameOrPassword)
//!            },
//!
//!            None => Err(Error::WrongUsernameOrPassword)
//!         }
//!     }
//!
//!     // The salt should have a user-specific component so that an attacker
//!     // cannot crack one password for multiple users in the database. It
//!     // should have a database-unique component so that an attacker cannot
//!     // crack the same user's password across databases in the unfortunate
//!     // but common case that the user has used the same password for
//!     // multiple systems.
//!     fn salt(&self, username: &str) -> Vec<u8> {
//!         let mut salt = Vec::with_capacity(self.db_salt_component.len() +
//!                                           username.as_bytes().len());
//!         salt.extend(self.db_salt_component.as_ref());
//!         salt.extend(username.as_bytes());
//!         salt
//!     }
//! }
//!
//! fn main() {
//!     // Normally these parameters would be loaded from a configuration file.
//!     let mut db = PasswordDatabase {
//!         pbkdf2_iterations: NonZeroU32::new(100_000).unwrap(),
//!         db_salt_component: [
//!             // This value was generated from a secure PRNG.
//!             0xd6, 0x26, 0x98, 0xda, 0xf4, 0xdc, 0x50, 0x52,
//!             0x24, 0xf2, 0x27, 0xd1, 0xfe, 0x39, 0x01, 0x8a
//!         ],
//!         storage: HashMap::new(),
//!     };
//!
//!     db.store_password("alice", "@74d7]404j|W}6u");
//!
//!     // An attempt to log in with the wrong password fails.
//!     assert!(db.verify_password("alice", "wrong password").is_err());
//!
//!     // Normally there should be an expoentially-increasing delay between
//!     // attempts to further protect against online attacks.
//!
//!     // An attempt to log in with the right password succeeds.
//!     assert!(db.verify_password("alice", "@74d7]404j|W}6u").is_ok());
//! }

use crate::{constant_time, digest, error, hmac, polyfill};
use core::num::NonZeroU32;

/// A PBKDF2 algorithm.
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct Algorithm(hmac::Algorithm);

/// PBKDF2 using HMAC-SHA1.
pub static PBKDF2_HMAC_SHA1: Algorithm = Algorithm(hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY);

/// PBKDF2 using HMAC-h.
pub static PBKDF2_HMAC_SHA256: Algorithm = Algorithm(hmac::HMAC_SHA256);

/// PBKDF2 using HMAC-SHA384.
pub static PBKDF2_HMAC_SHA384: Algorithm = Algorithm(hmac::HMAC_SHA384);

/// PBKDF2 using HMAC-SHA512.
pub static PBKDF2_HMAC_SHA512: Algorithm = Algorithm(hmac::HMAC_SHA512);

/// Fills `out` with the key derived using PBKDF2 with the given inputs.
///
/// Do not use `derive` as part of verifying a secret; use `verify` instead, to
/// minimize the effectiveness of timing attacks.
///
/// `out.len()` must be no larger than the digest length * (2**32 - 1), per the
/// PBKDF2 specification.
///
/// | Parameter   | RFC 2898 Section 5.2 Term
/// |-------------|-------------------------------------------
/// | digest_alg  | PRF (HMAC with the given digest algorithm)
/// | iterations  | c (iteration count)
/// | salt        | S (salt)
/// | secret      | P (password)
/// | out         | dk (derived key)
/// | out.len()   | dkLen (derived key length)
///
/// # Panics
///
/// `derive` panics if `out.len()` is larger than (2**32 - 1) * the digest
/// algorithm's output length, per the PBKDF2 specification.
pub fn derive(
    algorithm: Algorithm,
    iterations: NonZeroU32,
    salt: &[u8],
    secret: &[u8],
    out: &mut [u8],
) {
    let digest_alg = algorithm.0.digest_algorithm();
    let output_len = digest_alg.output_len;

    // This implementation's performance is asymptotically optimal as described
    // in https://jbp.io/2015/08/11/pbkdf2-performance-matters/. However, it
    // hasn't been optimized to the same extent as fastpbkdf2. In particular,
    // this implementation is probably doing a lot of unnecessary copying.

    let secret = hmac::Key::new(algorithm.0, secret);

    // Clear |out|.
    polyfill::slice::fill(out, 0);

    let mut idx: u32 = 0;

    for chunk in out.chunks_mut(output_len) {
        idx = idx.checked_add(1).expect("derived key too long");
        derive_block(&secret, iterations, salt, idx, chunk);
    }
}

fn derive_block(secret: &hmac::Key, iterations: NonZeroU32, salt: &[u8], idx: u32, out: &mut [u8]) {
    let mut ctx = hmac::Context::with_key(secret);
    ctx.update(salt);
    ctx.update(&u32::to_be_bytes(idx));

    let mut u = ctx.sign();

    let mut remaining: u32 = iterations.into();
    loop {
        for i in 0..out.len() {
            out[i] ^= u.as_ref()[i];
        }

        if remaining == 1 {
            break;
        }
        remaining -= 1;

        u = hmac::sign(secret, u.as_ref());
    }
}

/// Verifies that a previously-derived (e.g., using `derive`) PBKDF2 value
/// matches the PBKDF2 value derived from the other inputs.
///
/// The comparison is done in constant time to prevent timing attacks. The
/// comparison will fail if `previously_derived` is empty (has a length of
/// zero).
///
/// | Parameter                  | RFC 2898 Section 5.2 Term
/// |----------------------------|--------------------------------------------
/// | digest_alg                 | PRF (HMAC with the given digest algorithm).
/// | `iterations`               | c (iteration count)
/// | `salt`                     | S (salt)
/// | `secret`                   | P (password)
/// | `previously_derived`       | dk (derived key)
/// | `previously_derived.len()` | dkLen (derived key length)
///
/// # Panics
///
/// `verify` panics if `out.len()` is larger than (2**32 - 1) * the digest
/// algorithm's output length, per the PBKDF2 specification.
pub fn verify(
    algorithm: Algorithm,
    iterations: NonZeroU32,
    salt: &[u8],
    secret: &[u8],
    previously_derived: &[u8],
) -> Result<(), error::Unspecified> {
    let digest_alg = algorithm.0.digest_algorithm();

    if previously_derived.is_empty() {
        return Err(error::Unspecified);
    }

    let mut derived_buf = [0u8; digest::MAX_OUTPUT_LEN];

    let output_len = digest_alg.output_len;
    let secret = hmac::Key::new(algorithm.0, secret);
    let mut idx: u32 = 0;

    let mut matches = 1;

    for previously_derived_chunk in previously_derived.chunks(output_len) {
        idx = idx.checked_add(1).expect("derived key too long");

        let derived_chunk = &mut derived_buf[..previously_derived_chunk.len()];
        polyfill::slice::fill(derived_chunk, 0);

        derive_block(&secret, iterations, salt, idx, derived_chunk);

        // XXX: This isn't fully constant-time-safe. TODO: Fix that.
        let current_block_matches =
            if constant_time::verify_slices_are_equal(derived_chunk, previously_derived_chunk)
                .is_ok()
            {
                1
            } else {
                0
            };

        matches &= current_block_matches;
    }

    if matches == 0 {
        return Err(error::Unspecified);
    }

    Ok(())
}