1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
// Copyright 2015-2017 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Public key signatures: signing and verification.
//!
//! Use the `verify` function to verify signatures, passing a reference to the
//! algorithm that identifies the algorithm. See the documentation for `verify`
//! for examples.
//!
//! For signature verification, this API treats each combination of parameters
//! as a separate algorithm. For example, instead of having a single "RSA"
//! algorithm with a verification function that takes a bunch of parameters,
//! there are `RSA_PKCS1_2048_8192_SHA256`, `RSA_PKCS1_2048_8192_SHA384`, etc.,
//! which encode sets of parameter choices into objects. This is designed to
//! reduce the risks of algorithm agility and to provide consistency with ECDSA
//! and EdDSA.
//!
//! Currently this module does not support digesting the message to be signed
//! separately from the public key operation, as it is currently being
//! optimized for Ed25519 and for the implementation of protocols that do not
//! requiring signing large messages. An interface for efficiently supporting
//! larger messages may be added later.
//!
//!
//! # Algorithm Details
//!
//! ## `ECDSA_*_ASN1` Details: ASN.1-encoded ECDSA Signatures
//!
//! The signature is a ASN.1 DER-encoded `Ecdsa-Sig-Value` as described in
//! [RFC 3279 Section 2.2.3]. This is the form of ECDSA signature used in
//! X.509-related structures and in TLS's `ServerKeyExchange` messages.
//!
//! The public key is encoding in uncompressed form using the
//! Octet-String-to-Elliptic-Curve-Point algorithm in
//! [SEC 1: Elliptic Curve Cryptography, Version 2.0].
//!
//! During verification, the public key is validated using the ECC Partial
//! Public-Key Validation Routine from Section 5.6.2.3.3 of
//! [NIST Special Publication 800-56A, revision 2] and Appendix A.3 of the
//! NSA's [Suite B implementer's guide to FIPS 186-3]. Note that, as explained
//! in the NSA guide, ECC Partial Public-Key Validation is equivalent to ECC
//! Full Public-Key Validation for prime-order curves like this one.
//!
//! ## `ECDSA_*_FIXED` Details: Fixed-length (PKCS#11-style) ECDSA Signatures
//!
//! The signature is *r*||*s*, where || denotes concatenation, and where both
//! *r* and *s* are both big-endian-encoded values that are left-padded to the
//! maximum length. A P-256 signature will be 64 bytes long (two 32-byte
//! components) and a P-384 signature will be 96 bytes long (two 48-byte
//! components). This is the form of ECDSA signature used PKCS#11 and DNSSEC.
//!
//! The public key is encoding in uncompressed form using the
//! Octet-String-to-Elliptic-Curve-Point algorithm in
//! [SEC 1: Elliptic Curve Cryptography, Version 2.0].
//!
//! During verification, the public key is validated using the ECC Partial
//! Public-Key Validation Routine from Section 5.6.2.3.3 of
//! [NIST Special Publication 800-56A, revision 2] and Appendix A.3 of the
//! NSA's [Suite B implementer's guide to FIPS 186-3]. Note that, as explained
//! in the NSA guide, ECC Partial Public-Key Validation is equivalent to ECC
//! Full Public-Key Validation for prime-order curves like this one.
//!
//! ## `RSA_PKCS1_*` Details: RSA PKCS#1 1.5 Signatures
//!
//! The signature is an RSASSA-PKCS1-v1_5 signature as described in
//! [RFC 3447 Section 8.2].
//!
//! The public key is encoded as an ASN.1 `RSAPublicKey` as described in
//! [RFC 3447 Appendix-A.1.1]. The public key modulus length, rounded *up* to
//! the nearest (larger) multiple of 8 bits, must be in the range given in the
//! name of the algorithm. The public exponent must be an odd integer of 2-33
//! bits, inclusive.
//!
//!
//! ## `RSA_PSS_*` Details: RSA PSS Signatures
//!
//! The signature is an RSASSA-PSS signature as described in
//! [RFC 3447 Section 8.1].
//!
//! The public key is encoded as an ASN.1 `RSAPublicKey` as described in
//! [RFC 3447 Appendix-A.1.1]. The public key modulus length, rounded *up* to
//! the nearest (larger) multiple of 8 bits, must be in the range given in the
//! name of the algorithm. The public exponent must be an odd integer of 2-33
//! bits, inclusive.
//!
//! During verification, signatures will only be accepted if the MGF1 digest
//! algorithm is the same as the message digest algorithm and if the salt
//! length is the same length as the message digest. This matches the
//! requirements in TLS 1.3 and other recent specifications.
//!
//! During signing, the message digest algorithm will be used as the MGF1
//! digest algorithm. The salt will be the same length as the message digest.
//! This matches the requirements in TLS 1.3 and other recent specifications.
//! Additionally, the entire salt is randomly generated separately for each
//! signature using the secure random number generator passed to `sign()`.
//!
//!
//! [SEC 1: Elliptic Curve Cryptography, Version 2.0]:
//!     http://www.secg.org/sec1-v2.pdf
//! [NIST Special Publication 800-56A, revision 2]:
//!     http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
//! [Suite B implementer's guide to FIPS 186-3]:
//!     https://github.com/briansmith/ring/blob/master/doc/ecdsa.pdf
//! [RFC 3279 Section 2.2.3]:
//!     https://tools.ietf.org/html/rfc3279#section-2.2.3
//! [RFC 3447 Section 8.2]:
//!     https://tools.ietf.org/html/rfc3447#section-7.2
//! [RFC 3447 Section 8.1]:
//!     https://tools.ietf.org/html/rfc3447#section-8.1
//! [RFC 3447 Appendix-A.1.1]:
//!     https://tools.ietf.org/html/rfc3447#appendix-A.1.1
//!
//!
//! # Examples
//!
//! ## Signing and verifying with Ed25519
//!
//! ```
//! use ring::{
//!     rand,
//!     signature::{self, KeyPair},
//! };
//!
//! # fn sign_and_verify_ed25519() -> Result<(), ring::error::Unspecified> {
//! // Generate a key pair in PKCS#8 (v2) format.
//! let rng = rand::SystemRandom::new();
//! let pkcs8_bytes = signature::Ed25519KeyPair::generate_pkcs8(&rng)?;
//!
//! // Normally the application would store the PKCS#8 file persistently. Later
//! // it would read the PKCS#8 file from persistent storage to use it.
//!
//! let key_pair = signature::Ed25519KeyPair::from_pkcs8(pkcs8_bytes.as_ref())?;
//!
//! // Sign the message "hello, world".
//! const MESSAGE: &[u8] = b"hello, world";
//! let sig = key_pair.sign(MESSAGE);
//!
//! // Normally an application would extract the bytes of the signature and
//! // send them in a protocol message to the peer(s). Here we just get the
//! // public key key directly from the key pair.
//! let peer_public_key_bytes = key_pair.public_key().as_ref();
//!
//! // Verify the signature of the message using the public key. Normally the
//! // verifier of the message would parse the inputs to this code out of the
//! // protocol message(s) sent by the signer.
//! let peer_public_key =
//!     signature::UnparsedPublicKey::new(&signature::ED25519, peer_public_key_bytes);
//! peer_public_key.verify(MESSAGE, sig.as_ref())?;
//!
//! # Ok(())
//! # }
//!
//! # fn main() { sign_and_verify_ed25519().unwrap() }
//! ```
//!
//! ## Signing and verifying with RSA (PKCS#1 1.5 padding)
//!
//! By default OpenSSL writes RSA public keys in SubjectPublicKeyInfo format,
//! not RSAPublicKey format, and Base64-encodes them (“PEM” format).
//!
//! To convert the PEM SubjectPublicKeyInfo format (“BEGIN PUBLIC KEY”) to the
//! binary RSAPublicKey format needed by `verify()`, use:
//!
//! ```sh
//! openssl rsa -pubin \
//!             -in public_key.pem \
//!             -inform PEM \
//!             -RSAPublicKey_out \
//!             -outform DER \
//!             -out public_key.der
//! ```
//!
//! To extract the RSAPublicKey-formatted public key from an ASN.1 (binary)
//! DER-encoded RSAPrivateKey format private key file, use:
//!
//! ```sh
//! openssl rsa -in private_key.der \
//!             -inform DER \
//!             -RSAPublicKey_out \
//!             -outform DER \
//!             -out public_key.der
//! ```
//!
//! ```
//! use ring::{rand, signature};
//!
//! # #[cfg(feature = "std")]
//! fn sign_and_verify_rsa(private_key_path: &std::path::Path,
//!                        public_key_path: &std::path::Path)
//!                        -> Result<(), MyError> {
//! // Create an `RsaKeyPair` from the DER-encoded bytes. This example uses
//! // a 2048-bit key, but larger keys are also supported.
//! let private_key_der = read_file(private_key_path)?;
//! let key_pair = signature::RsaKeyPair::from_der(&private_key_der)
//!     .map_err(|_| MyError::BadPrivateKey)?;
//!
//! // Sign the message "hello, world", using PKCS#1 v1.5 padding and the
//! // SHA256 digest algorithm.
//! const MESSAGE: &'static [u8] = b"hello, world";
//! let rng = rand::SystemRandom::new();
//! let mut signature = vec![0; key_pair.public_modulus_len()];
//! key_pair.sign(&signature::RSA_PKCS1_SHA256, &rng, MESSAGE, &mut signature)
//!     .map_err(|_| MyError::OOM)?;
//!
//! // Verify the signature.
//! let public_key =
//!     signature::UnparsedPublicKey::new(&signature::RSA_PKCS1_2048_8192_SHA256,
//!                                       read_file(public_key_path)?);
//! public_key.verify(MESSAGE, &signature)
//!     .map_err(|_| MyError::BadSignature)
//! }
//!
//! #[derive(Debug)]
//! enum MyError {
//! #  #[cfg(feature = "std")]
//!    IO(std::io::Error),
//!    BadPrivateKey,
//!    OOM,
//!    BadSignature,
//! }
//!
//! # #[cfg(feature = "std")]
//! fn read_file(path: &std::path::Path) -> Result<Vec<u8>, MyError> {
//!     use std::io::Read;
//!
//!     let mut file = std::fs::File::open(path).map_err(|e| MyError::IO(e))?;
//!     let mut contents: Vec<u8> = Vec::new();
//!     file.read_to_end(&mut contents).map_err(|e| MyError::IO(e))?;
//!     Ok(contents)
//! }
//! #
//! # #[cfg(not(feature = "std"))]
//! # fn sign_and_verify_rsa(_private_key_path: &std::path::Path,
//! #                        _public_key_path: &std::path::Path)
//! #                        -> Result<(), ()> {
//! #     Ok(())
//! # }
//! #
//! # fn main() {
//! #     let private_key_path =
//! #         std::path::Path::new("src/rsa/signature_rsa_example_private_key.der");
//! #     let public_key_path =
//! #         std::path::Path::new("src/rsa/signature_rsa_example_public_key.der");
//! #     sign_and_verify_rsa(&private_key_path, &public_key_path).unwrap()
//! # }
//! ```

use crate::{cpu, ec, error, sealed};
use untrusted;

pub use crate::ec::{
    curve25519::ed25519::{
        signing::Ed25519KeyPair,
        verification::{EdDSAParameters, ED25519},
        ED25519_PUBLIC_KEY_LEN,
    },
    suite_b::ecdsa::{
        signing::{
            EcdsaKeyPair, EcdsaSigningAlgorithm, ECDSA_P256_SHA256_ASN1_SIGNING,
            ECDSA_P256_SHA256_FIXED_SIGNING, ECDSA_P384_SHA384_ASN1_SIGNING,
            ECDSA_P384_SHA384_FIXED_SIGNING,
        },
        verification::{
            EcdsaVerificationAlgorithm, ECDSA_P256_SHA256_ASN1, ECDSA_P256_SHA256_FIXED,
            ECDSA_P256_SHA384_ASN1, ECDSA_P384_SHA256_ASN1, ECDSA_P384_SHA384_ASN1,
            ECDSA_P384_SHA384_FIXED,
        },
    },
};

#[cfg(feature = "alloc")]
pub use crate::rsa::{
    signing::RsaKeyPair,
    signing::RsaSubjectPublicKey,

    verification::{
        RsaPublicKeyComponents, RSA_PKCS1_2048_8192_SHA1_FOR_LEGACY_USE_ONLY,
        RSA_PKCS1_2048_8192_SHA256, RSA_PKCS1_2048_8192_SHA384, RSA_PKCS1_2048_8192_SHA512,
        RSA_PKCS1_3072_8192_SHA384, RSA_PSS_2048_8192_SHA256, RSA_PSS_2048_8192_SHA384,
        RSA_PSS_2048_8192_SHA512,
    },

    RsaEncoding,
    RsaParameters,

    // `RSA_PKCS1_SHA1` is intentionally not exposed. At a minimum, we'd need
    // to create test vectors for signing with it, which we don't currently
    // have. But, it's a bad idea to use SHA-1 anyway, so perhaps we just won't
    // ever expose it.
    RSA_PKCS1_SHA256,
    RSA_PKCS1_SHA384,
    RSA_PKCS1_SHA512,

    RSA_PSS_SHA256,
    RSA_PSS_SHA384,
    RSA_PSS_SHA512,
};

/// A public key signature returned from a signing operation.
#[derive(Clone, Copy)]
pub struct Signature {
    value: [u8; MAX_LEN],
    len: usize,
}

impl Signature {
    // Panics if `value` is too long.
    pub(crate) fn new<F>(fill: F) -> Self
    where
        F: FnOnce(&mut [u8; MAX_LEN]) -> usize,
    {
        let mut r = Self {
            value: [0; MAX_LEN],
            len: 0,
        };
        r.len = fill(&mut r.value);
        r
    }
}

impl AsRef<[u8]> for Signature {
    fn as_ref(&self) -> &[u8] {
        &self.value[..self.len]
    }
}

/// Key pairs for signing messages (private key and public key).
pub trait KeyPair: core::fmt::Debug + Send + Sized + Sync {
    /// The type of the public key.
    type PublicKey: AsRef<[u8]> + core::fmt::Debug + Clone + Send + Sized + Sync;

    /// The public key for the key pair.
    fn public_key(&self) -> &Self::PublicKey;
}

/// The longest signature is an ASN.1 P-384 signature where *r* and *s* are of
/// maximum length with the leading high bit set on each. Then each component
/// will have a tag, a one-byte length, and a one-byte “I'm not negative”
/// prefix, and the outer sequence will have a two-byte length.
pub(crate) const MAX_LEN: usize = 1/*tag:SEQUENCE*/ + 2/*len*/ +
    (2 * (1/*tag:INTEGER*/ + 1/*len*/ + 1/*zero*/ + ec::SCALAR_MAX_BYTES));

/// A signature verification algorithm.
pub trait VerificationAlgorithm: core::fmt::Debug + Sync + sealed::Sealed {
    /// Verify the signature `signature` of message `msg` with the public key
    /// `public_key`.
    fn verify(
        &self,
        public_key: untrusted::Input,
        msg: untrusted::Input,
        signature: untrusted::Input,
    ) -> Result<(), error::Unspecified>;
}

/// An unparsed, possibly malformed, public key for signature verification.
pub struct UnparsedPublicKey<B: AsRef<[u8]>> {
    algorithm: &'static dyn VerificationAlgorithm,
    bytes: B,
}

impl<B: Copy> Copy for UnparsedPublicKey<B> where B: AsRef<[u8]> {}

impl<B: Clone> Clone for UnparsedPublicKey<B>
where
    B: AsRef<[u8]>,
{
    fn clone(&self) -> Self {
        Self {
            algorithm: self.algorithm,
            bytes: self.bytes.clone(),
        }
    }
}

impl<B: AsRef<[u8]>> UnparsedPublicKey<B> {
    /// Construct a new `UnparsedPublicKey`.
    ///
    /// No validation of `bytes` is done until `verify()` is called.
    #[inline]
    pub fn new(algorithm: &'static dyn VerificationAlgorithm, bytes: B) -> Self {
        Self { algorithm, bytes }
    }

    /// Parses the public key and verifies `signature` is a valid signature of
    /// `message` using it.
    ///
    /// See the [crate::signature] module-level documentation for examples.
    pub fn verify(&self, message: &[u8], signature: &[u8]) -> Result<(), error::Unspecified> {
        let _ = cpu::features();
        self.algorithm.verify(
            untrusted::Input::from(self.bytes.as_ref()),
            untrusted::Input::from(message),
            untrusted::Input::from(signature),
        )
    }
}