1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

/*!
 * This module implements the Scrypt key derivation function as specified in [1].
 *
 * # References
 * [1] - C. Percival. Stronger Key Derivation Via Sequential Memory-Hard Functions.
 *       http://www.tarsnap.com/scrypt/scrypt.pdf
 */

use std;
use std::iter::repeat;
use std::{io, mem, ptr};
use std::mem::size_of;

use data_encoding::BASE64;

use ring::{rand, pbkdf2, constant_time, digest};

// The salsa20/8 core function.
fn salsa20_8(input: &[u8], output: &mut [u8]) {

    let mut x = [0u32; 16];
    read_u32v_le(&mut x, input);

    let rounds = 8;

    macro_rules! run_round (
        ($($set_idx:expr, $idx_a:expr, $idx_b:expr, $rot:expr);*) => { {
            $( x[$set_idx] ^= x[$idx_a].wrapping_add(x[$idx_b]).rotate_left($rot); )*
        } }
    );

    for _ in 0..rounds / 2 {
        run_round!(
            0x4, 0x0, 0xc, 7;
            0x8, 0x4, 0x0, 9;
            0xc, 0x8, 0x4, 13;
            0x0, 0xc, 0x8, 18;
            0x9, 0x5, 0x1, 7;
            0xd, 0x9, 0x5, 9;
            0x1, 0xd, 0x9, 13;
            0x5, 0x1, 0xd, 18;
            0xe, 0xa, 0x6, 7;
            0x2, 0xe, 0xa, 9;
            0x6, 0x2, 0xe, 13;
            0xa, 0x6, 0x2, 18;
            0x3, 0xf, 0xb, 7;
            0x7, 0x3, 0xf, 9;
            0xb, 0x7, 0x3, 13;
            0xf, 0xb, 0x7, 18;
            0x1, 0x0, 0x3, 7;
            0x2, 0x1, 0x0, 9;
            0x3, 0x2, 0x1, 13;
            0x0, 0x3, 0x2, 18;
            0x6, 0x5, 0x4, 7;
            0x7, 0x6, 0x5, 9;
            0x4, 0x7, 0x6, 13;
            0x5, 0x4, 0x7, 18;
            0xb, 0xa, 0x9, 7;
            0x8, 0xb, 0xa, 9;
            0x9, 0x8, 0xb, 13;
            0xa, 0x9, 0x8, 18;
            0xc, 0xf, 0xe, 7;
            0xd, 0xc, 0xf, 9;
            0xe, 0xd, 0xc, 13;
            0xf, 0xe, 0xd, 18
        )
    }

    for i in 0..16 {
        write_u32_le(
            &mut output[i * 4..(i + 1) * 4],
            x[i].wrapping_add(read_u32_le(&input[i * 4..(i + 1) * 4])));
    }
}

fn xor(x: &[u8], y: &[u8], output: &mut [u8]) {
    for ((out, &x_i), &y_i) in output.iter_mut().zip(x.iter()).zip(y.iter()) {
        *out = x_i ^ y_i;
    }
}

// Execute the BlockMix operation
// input - the input vector. The length must be a multiple of 128.
// output - the output vector. Must be the same length as input.
fn scrypt_block_mix(input: &[u8], output: &mut [u8]) {
    let mut x = [0u8; 64];
    copy_memory(&input[input.len() - 64..], &mut x);

    let mut t = [0u8; 64];

    for (i, chunk) in input.chunks(64).enumerate() {
        xor(&x, chunk, &mut t);
        salsa20_8(&t, &mut x);
        let pos = if i % 2 == 0 { (i / 2) * 64 } else { (i / 2) * 64 + input.len() / 2 };
        copy_memory(&x, &mut output[pos..pos + 64]);
    }
}

// Execute the ROMix operation in-place.
// b - the data to operate on
// v - a temporary variable to store the vector V
// t - a temporary variable to store the result of the xor
// n - the scrypt parameter N
fn scrypt_ro_mix(b: &mut [u8], v: &mut [u8], t: &mut [u8], n: usize) {
    fn integerify(x: &[u8], n: usize) -> usize {
        // n is a power of 2, so n - 1 gives us a bitmask that we can use to perform a calculation
        // mod n using a simple bitwise and.
        let mask = n - 1;
        // This cast is safe since we're going to get the value mod n (which is a power of 2), so we
        // don't have to care about truncating any of the high bits off
        (read_u32_le(&x[x.len() - 64..x.len() - 60]) as usize) & mask
    }

    let len = b.len();

    for chunk in v.chunks_mut(len) {
        copy_memory(b, chunk);
        scrypt_block_mix(chunk, b);
    }

    for _ in 0..n {
        let j = integerify(b, n);
        xor(b, &v[j * len..(j + 1) * len], t);
        scrypt_block_mix(t, b);
    }
}

fn read_u32_le(input: &[u8]) -> u32 {
    assert_eq!(input.len(), 4);
    unsafe {
        let mut tmp: u32 = mem::uninitialized();
        ptr::copy_nonoverlapping(input.get_unchecked(0), &mut tmp as *mut _ as *mut u8, 4);
        u32::from_le(tmp)
    }
}

fn read_u32v_le(dst: &mut[u32], input: &[u8]) {
    assert_eq!(dst.len() * 4, input.len());
    unsafe {
        let mut x: *mut u32 = dst.get_unchecked_mut(0);
        let mut y: *const u8 = input.get_unchecked(0);
        for _ in 0..dst.len() {
            let mut tmp: u32 = mem::uninitialized();
            ptr::copy_nonoverlapping(y, &mut tmp as *mut _ as *mut u8, 4);
            *x = u32::from_le(tmp);
            x = x.offset(1);
            y = y.offset(4);
        }
    }
}

fn write_u32_le(dst: &mut[u8], mut input: u32) {
    assert_eq!(dst.len(), 4);
    input = input.to_le();
    unsafe {
        let tmp = &input as *const _ as *const u8;
        ptr::copy_nonoverlapping(tmp, dst.get_unchecked_mut(0), 4);
    }
}

/// Copy bytes from src to dest
#[inline]
fn copy_memory(src: &[u8], dst: &mut [u8]) {
    assert!(dst.len() >= src.len());
    unsafe {
        let srcp = src.as_ptr();
        let dstp = dst.as_mut_ptr();
        ptr::copy_nonoverlapping(srcp, dstp, src.len());
    }
}

/**
 * The Scrypt parameter values.
 */
#[derive(Clone, Copy)]
pub struct ScryptParams {
    log_n: u8,
    r: u32,
    p: u32
}

impl ScryptParams {
    /**
     * Create a new instance of ScryptParams.
     *
     * # Arguments
     *
     * * `log_n` - The log2 of the Scrypt parameter N
     * * `r` - The Scrypt parameter r
     * * `p` - The Scrypt parameter p
     *
     */
    pub fn new(log_n: u8, r: u32, p: u32) -> ScryptParams {
        assert!(r > 0);
        assert!(p > 0);
        assert!(log_n > 0);
        assert!((log_n as usize) < size_of::<usize>() * 8);
        assert!(size_of::<usize>() >= size_of::<u32>()
                || (r <= std::usize::MAX as u32 && p < std::usize::MAX as u32));

        let r = r as usize;
        let p = p as usize;

        let n: usize = 1 << log_n;

        // check that r * 128 doesn't overflow
        let r128 = r.checked_mul(128).expect("Invalid Scrypt parameters.");

        // check that n * r * 128 doesn't overflow
        if r128.checked_mul(n).is_none() {
            panic!("Invalid Scrypt parameters.");
        };

        // check that p * r * 128 doesn't overflow
        if r128.checked_mul(p).is_none() {
            panic!("Invalid Scrypt parameters.");
        };

        // This check required by Scrypt:
        // check: n < 2^(128 * r / 8)
        // r * 16 won't overflow since r128 didn't
        assert!((log_n as usize) < r * 16);

        // This check required by Scrypt:
        // check: p <= ((2^32-1) * 32) / (128 * r)
        // It takes a bit of re-arranging to get the check above into this form, but, it is indeed
        // the same.
        assert!(r * p < 0x40000000);

        ScryptParams {
            log_n: log_n,
            r: r as u32,
            p: p as u32
        }
    }
}

static DIGEST_ALG: &'static digest::Algorithm = &digest::SHA256;

/**
 * The scrypt key derivation function.
 *
 * # Arguments
 *
 * * `password` - The password to process as a byte vector
 * * `salt` - The salt value to use as a byte vector
 * * `params` - The `ScryptParams` to use
 * * `output` - The resulting derived key is returned in this byte vector.
 *
 */
pub fn scrypt(password: &[u8], salt: &[u8], params: &ScryptParams, output: &mut [u8]) {
    // This check required by Scrypt:
    // check output.len() > 0 && output.len() <= (2^32 - 1) * 32
    assert!(!output.is_empty());
    assert!(output.len() / 32 <= 0xffffffff);

    // The checks in the ScryptParams constructor guarantee that the following is safe:
    let n = 1 << params.log_n;
    let r128 = (params.r as usize) * 128;
    let pr128 = (params.p as usize) * r128;
    let nr128 = n * r128;

    let mut b: Vec<u8> = repeat(0).take(pr128).collect();
    pbkdf2::derive(DIGEST_ALG, 1, salt, password, b.as_mut_slice());

    let mut v: Vec<u8> = repeat(0).take(nr128).collect();
    let mut t: Vec<u8> = repeat(0).take(r128).collect();

    for chunk in b.as_mut_slice().chunks_mut(r128) {
        scrypt_ro_mix(chunk, v.as_mut_slice(), t.as_mut_slice(), n);
    }

    pbkdf2::derive(DIGEST_ALG, 1, &b, password, output);
}

/**
 * `scrypt_simple` is a helper function that should be sufficient for the majority of cases where
 * an application needs to use Scrypt to hash a password for storage. The result is a `String` that
 * contains the parameters used as part of its encoding. The `scrypt_check` function may be used on
 * a password to check if it is equal to a hashed value.
 *
 * # Format
 *
 * The format of the output is a modified version of the Modular Crypt Format that encodes algorithm
 * used and the parameter values. If all parameter values can each fit within a single byte, a
 * compact format is used (format 0). However, if any value cannot, an expanded format where the r
 * and p parameters are encoded using 4 bytes (format 1) is used. Both formats use a 128-bit salt
 * and a 256-bit hash. The format is indicated as "rscrypt" which is short for "Rust Scrypt format."
 *
 * $rscrypt$<format>$<base64(log_n,r,p)>$<base64(salt)>$<based64(hash)>$
 *
 * # Arguments
 *
 * * `password` - The password to process as a string
 * * `params` - The `ScryptParams` to use
 *
 */
pub fn scrypt_simple(password: &str, params: &ScryptParams) -> io::Result<String> {
    use ring::rand::SecureRandom;
    let rng = rand::SystemRandom::new();

    // 128-bit random salt
    let mut salt = [0u8; 16];
    rng.fill(&mut salt).unwrap();

    // 256-bit derived key
    let mut dk = [0u8; 32];

    scrypt(password.as_bytes(), &salt, params, &mut dk);

    let mut result = "$rscrypt$".to_string();
    if params.r < 256 && params.p < 256 {
        result.push_str("0$");
        let mut tmp = [0u8; 3];
        tmp[0] = params.log_n;
        tmp[1] = params.r as u8;
        tmp[2] = params.p as u8;
        result.push_str(&BASE64.encode(&tmp));
    } else {
        result.push_str("1$");
        let mut tmp = [0u8; 9];
        tmp[0] = params.log_n;
        write_u32_le(&mut tmp[1..5], params.r);
        write_u32_le(&mut tmp[5..9], params.p);
        result.push_str(&BASE64.encode(&tmp));
    }
    result.push('$');
    result.push_str(&BASE64.encode(&salt));
    result.push('$');
    result.push_str(&BASE64.encode(&dk));
    result.push('$');

    Ok(result)
}

/**
 * `scrypt_check` compares a password against the result of a previous call to `scrypt_simple` and
 * returns true if the passed in password hashes to the same value.
 *
 * # Arguments
 *
 * * `password` - The password to process as a string
 * * `hashed_value` - A string representing a hashed password returned by `scrypt_simple`
 *
 */
pub fn scrypt_check(password: &str, hashed_value: &str) -> Result<bool, &'static str> {
    static ERR_STR: &'static str = "Hash is not in Rust Scrypt format.";

    let mut iter = hashed_value.split('$');

    // Check that there are no characters before the first "$"
    match iter.next() {
        Some(x) if x == "" => (),
        _ => return Err(ERR_STR),
    }

    // Check the name
    match iter.next() {
        Some(t) if t == "rscrypt" => (),
        _ => return Err(ERR_STR),
    }

    // Parse format - currenlty only version 0 (compact) and 1 (expanded) are supported
    let fstr = match iter.next() {
        Some(fstr) => fstr,
        None => return Err(ERR_STR),
    };

    // Parse the parameters - the size of them depends on the if we are using the compact or
    // expanded format
    let pvec = match iter.next() {
        Some(pstr) => match BASE64.decode(pstr.as_bytes()) {
            Ok(x) => x,
            Err(_) => return Err(ERR_STR)
        },
        None => return Err(ERR_STR)
    };

    let params = match fstr {
        "0" => {
            if pvec.len() != 3 { return Err(ERR_STR); }
            let log_n = pvec[0];
            let r = pvec[1] as u32;
            let p = pvec[2] as u32;
            ScryptParams::new(log_n, r, p)
        }
        "1" => {
            if pvec.len() != 9 { return Err(ERR_STR); }
            let log_n = pvec[0];
            let mut pval = [0u32; 2];
            read_u32v_le(&mut pval, &pvec[1..9]);
            ScryptParams::new(log_n, pval[0], pval[1])
        }
        _ => return Err(ERR_STR)
    };

    // Salt
    let salt = match iter.next() {
        Some(sstr) => match BASE64.decode(sstr.as_bytes()) {
            Ok(salt) => salt,
            Err(_) => return Err(ERR_STR)
        },
        None => return Err(ERR_STR)
    };

    // Hashed value
    let hash = match iter.next() {
        Some(hstr) => match BASE64.decode(hstr.as_bytes()) {
            Ok(hash) => hash,
            Err(_) => return Err(ERR_STR)
        },
        None => return Err(ERR_STR)
    };

    // Make sure that the input ends with a "$"
    match iter.next() {
        Some(x) if x == "" => (),
        _ => return Err(ERR_STR)
    }

    // Make sure there is no trailing data after the final "$"
    if iter.next().is_some() {
        return Err(ERR_STR);
    }

    let mut output = vec![0u8; hash.len()];
    scrypt(password.as_bytes(), &*salt, &params, &mut output);

    Ok(constant_time::verify_slices_are_equal(&output, &hash).is_ok())
}

#[cfg(test)]
mod test {
    use std::iter::repeat;

    use scrypt::{scrypt, scrypt_simple, scrypt_check, ScryptParams};

    struct Test {
        password: &'static str,
        salt: &'static str,
        log_n: u8,
        r: u32,
        p: u32,
        expected: Vec<u8>
    }

    // Test vectors from [1]. The last test vector is omitted because it takes too long to run.

    fn tests() -> Vec<Test> {
        vec![
            Test {
                password: "",
                salt: "",
                log_n: 4,
                r: 1,
                p: 1,
                expected: vec![
                    0x77, 0xd6, 0x57, 0x62, 0x38, 0x65, 0x7b, 0x20,
                    0x3b, 0x19, 0xca, 0x42, 0xc1, 0x8a, 0x04, 0x97,
                    0xf1, 0x6b, 0x48, 0x44, 0xe3, 0x07, 0x4a, 0xe8,
                    0xdf, 0xdf, 0xfa, 0x3f, 0xed, 0xe2, 0x14, 0x42,
                    0xfc, 0xd0, 0x06, 0x9d, 0xed, 0x09, 0x48, 0xf8,
                    0x32, 0x6a, 0x75, 0x3a, 0x0f, 0xc8, 0x1f, 0x17,
                    0xe8, 0xd3, 0xe0, 0xfb, 0x2e, 0x0d, 0x36, 0x28,
                    0xcf, 0x35, 0xe2, 0x0c, 0x38, 0xd1, 0x89, 0x06 ]
            },
            Test {
                password: "password",
                salt: "NaCl",
                log_n: 10,
                r: 8,
                p: 16,
                expected: vec![
                    0xfd, 0xba, 0xbe, 0x1c, 0x9d, 0x34, 0x72, 0x00,
                    0x78, 0x56, 0xe7, 0x19, 0x0d, 0x01, 0xe9, 0xfe,
                    0x7c, 0x6a, 0xd7, 0xcb, 0xc8, 0x23, 0x78, 0x30,
                    0xe7, 0x73, 0x76, 0x63, 0x4b, 0x37, 0x31, 0x62,
                    0x2e, 0xaf, 0x30, 0xd9, 0x2e, 0x22, 0xa3, 0x88,
                    0x6f, 0xf1, 0x09, 0x27, 0x9d, 0x98, 0x30, 0xda,
                    0xc7, 0x27, 0xaf, 0xb9, 0x4a, 0x83, 0xee, 0x6d,
                    0x83, 0x60, 0xcb, 0xdf, 0xa2, 0xcc, 0x06, 0x40 ]
            },
            Test {
                password: "pleaseletmein",
                salt: "SodiumChloride",
                log_n: 14,
                r: 8,
                p: 1,
                expected: vec![
                    0x70, 0x23, 0xbd, 0xcb, 0x3a, 0xfd, 0x73, 0x48,
                    0x46, 0x1c, 0x06, 0xcd, 0x81, 0xfd, 0x38, 0xeb,
                    0xfd, 0xa8, 0xfb, 0xba, 0x90, 0x4f, 0x8e, 0x3e,
                    0xa9, 0xb5, 0x43, 0xf6, 0x54, 0x5d, 0xa1, 0xf2,
                    0xd5, 0x43, 0x29, 0x55, 0x61, 0x3f, 0x0f, 0xcf,
                    0x62, 0xd4, 0x97, 0x05, 0x24, 0x2a, 0x9a, 0xf9,
                    0xe6, 0x1e, 0x85, 0xdc, 0x0d, 0x65, 0x1e, 0x40,
                    0xdf, 0xcf, 0x01, 0x7b, 0x45, 0x57, 0x58, 0x87 ]
            },
        ]
    }

    #[test]
    fn test_scrypt() {
        let tests = tests();
        for t in tests.iter() {
            let mut result: Vec<u8> = repeat(0).take(t.expected.len()).collect();
            let params = ScryptParams::new(t.log_n, t.r, t.p);
            scrypt(t.password.as_bytes(), t.salt.as_bytes(), &params, &mut result);
            assert!(result == t.expected);
        }
    }

    fn test_scrypt_simple(log_n: u8, r: u32, p: u32) {
        let password = "password";

        let params = ScryptParams::new(log_n, r, p);
        let out1 = scrypt_simple(password, &params).unwrap();
        let out2 = scrypt_simple(password, &params).unwrap();

        // This just makes sure that a salt is being applied. It doesn't verify that that salt is
        // cryptographically strong, however.
        assert!(out1 != out2);

        match scrypt_check(password, &out1[..]) {
            Ok(r) => assert!(r),
            Err(_) => panic!()
        }
        match scrypt_check(password, &out2[..]) {
            Ok(r) => assert!(r),
            Err(_) => panic!()
        }

        match scrypt_check("wrong", &out1[..]) {
            Ok(r) => assert!(!r),
            Err(_) => panic!()
        }
        match scrypt_check("wrong", &out2[..]) {
            Ok(r) => assert!(!r),
            Err(_) => panic!()
        }
    }

    #[test]
    fn test_scrypt_simple_compact() {
        // These parameters are intentionally very weak - the goal is to make the test run quickly!
        test_scrypt_simple(7, 8, 1);
    }

    #[test]
    fn test_scrypt_simple_expanded() {
        // These parameters are intentionally very weak - the goal is to make the test run quickly!
        test_scrypt_simple(3, 1, 256);
    }
}